CONSULTING ENGINEERS

DM ROMA

July 14, 2021

Alex Sirois, Code Enforcement Officer Town of Raymond 401 Webbs Mills Road Raymond, ME 04071

Re: Major Subdivision Application Raymond Hills Village – An 18-Unit Condominium Raymond Hills LLC - Applicant

Dear Alex and Planning Board Members:

On behalf of Raymond Hills LLC we are pleased to submit the enclosed application for Subdivision Plan review of a proposed residential condominium development to create 18 residential dwellings in 9 duplex buildings on an 8.8-acre parcel identified on Tax Map 51 as Lot 22-A. The property is located in the Village Residential Zoning District and has access from a 50-foot right-of-way to Webbs Mill Road (Route 85). A driveway will be constructed within the 50-ft right-of-way and through the subject parcel with a cul-de-sac turnaround, with a road section that is designed to be in conformance with the Town standards for a Private Street with a 20-ft wide pavement surface with shoulders. Some portions of the roadway will be curbed and some will have roadside ditches.

An 8-inch public water main will be installed in the new driveway and all new dwellings will be served by public water. There is an existing fire hydrant on Route 85 at the project entrance and a new hydrant will be installed at roadway station 7+50. A right-of-way will be provided to the Water District over the driveway and will extend to the southerly property line so that the main could be extended in the future if the Town or an adjacent landowner wanted to extend water service. The Portland Water District is currently reviewing our design plans and an Ability to Serve letter will be provided to the Town once it is received by the District.

Electrical service will be installed underground from Route 85. Transformers and pull box locations have been proposed and will be coordinated with Central Maine Power Company.

The project will include the construction of multiple septic tanks to collect wastewater and a central collection system that will collect and pump the wastewater to a single disposal field. The disposal field is a concrete chamber system designed for 3,960 gallons per day and will include advanced treatment. The system is considered an Engineered System and requires approval by the State. The application to the State will include a hydraulic mounding and transmissivity analysis prepared by a Certified Geologist. A copy of the wastewater disposal system application will be provided to the Town for review once it is submitted to the State.

Stormwater Management will be provided by the construction of a storm drain collection system and multiple devices that will provide treatment and peak flow attenuation. A Stormwater Permit Application has been filed with the Maine Department of Environmental Protection and is currently under review. Stormwater management features will include two Filterra tree-box filters, a subsurface StormTech stormwater detention system and an underdrained soil filter basin. Roofline drip edges will be constructed on each of the buildings to treat roof runoff. A stormwater management report has been prepared and is included for review.

A Driveway Entrance Permit Application has been filed with the Maine Department of Transportation to review sight distance at the proposed driveway intersection with Route 85 and to approve the design and

location of the driveway. The Maine DOT will also review the stormwater collection and conveyance design calculations to approve connection into the subsurface storm drain system that exists in Route 85.

We have proposed two different building styles that will be constructed. Ten of the proposed dwelling units will have 2 bedrooms each and 8 of the units will have 3-bedrooms. We have alternated the building styles to provide variety and character to the neighborhood. Each unit will have an attached garage and attractive architecture. We have provided building elevations showing the intended building design for the Board's review.

We would like to be placed on the next available agenda with the Planning Board to discuss this proposed subdivision as a sketch plan and to hear any preliminary concerns that the Board may have with our request. Upon your review of this information, please let us know if you have any questions or require any additional information.

Sincerely,

DM ROMA CONSULTING ENGINEERS

Dustin Roma

Dustin M. Roma, P.E. President

Appl	Town of Raymond P ication for Subdivisi rev 1-25-17	anning Boa on and Site	Page 2 of 3 rd Review
Pronerty Ir	formation	C	Office Use Only
Map <u>51</u> Lot <u>22-A</u>		Filing Fee\$	Abutter notices \$
Zoning District <u>VR</u> Street Address: 0 WEBB	 IS MILL ROAD	0	
Deed Reference		Legal ad fee\$	Fire Department\$
Book <u>37806</u> Pag	ge <u>72</u>	Escrow \$	Total fees \$
Parcel Size 8.8 ACRES	_		
<u>Applicant</u> Information			
Name: RAYMOND H	ILLS, LLC	Telepho	me:
Address: 9 DAVIS FAI	RM ROAD	Fax:	
RAYMOND,	ME 04071	email: TCL	_INTON01@COMCAST.NET
Note: Attach permission fr	om owner if application not signe	d by owner.	
Agent Information Name: DUSTIN ROMA, Address: PO BOX 1116	<u>X</u> check here if correspo	ndence should be ERS Telepho Fax:	e directed to agent one: <u>310 - 0506</u>
WINDHAM, ME	04062	email: DUS	TIN@DMROMA.COM
Owner Information			
Name: IIMOTHY CLIN		Telepho	one:
Address: 9 DAVIS FAR		Fax:	
RATMOND, I		email: TCLIN	
Proposed Developm	ent (check all that apply)		
X	Subdivision	Site Plan	
	Pre-Application Conference		
X	Preliminary Plan Review		
	Final Plan Review		
	Other:		
Project Type:			
	Single Family Subdivision		
X - DUPLEX	Multi-family Development		
	Commercial		
	Industrial		
	Other:		

 $S: \verb|COMMITTEES|Planning Board| regulations-applications| 2017 PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 \ PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 \ PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 \ PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 \ PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 \ PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 \ PB \ App \ for \ Subdivision \ \& \ Site \ Review. docxx \ Applications| 2017 \ PB \ App \ for \ Subdivision \ B \ App \ Subdivision \ Subdivision \ B \ App \ Subdivision \ B \ App \ Subdivision \ Subdivis$

Аррп	cation for S	ubdivision a	and Site	Review	
oposed Developme	nt Name:	KAYMOND HILLS	VILLAGE		
10	Number of Lots	_			
	Number of Units	5 	ad Didaa		
	Total Square Foo	tage of Comm./1	nd. Blags.		
oposed Road Name	(s):				
ROSIE LANE					
her Approvals Requ	ired:				
	Zoning Board of	Appeals:	Variance _	Special Exception	
<u> </u>	ME Dept. of Env	ironmental Prote	ection		
The undersigne property, hereby of and correct to the b by the Town for cor the town, state and The undersigned agent of the Town o purposes of review	d, being the ap certifies that al oest of his/her l formance with federal govern d, by their signa f Raymond or o of this applicat	plicant, owner l information o cnowledge and a all applicable ment. ature below au other review ag ion.	or legal re- contained submits s regulation thorizes a gency to er	epresentative of the in this application is tr uch information for re ns, ordinances, and coo ny member of or autho iter the property for th	rue evie les oriz
The undersigne property, hereby of and correct to the b by the Town for cor the town, state and The undersigned agent of the Town o purposes of review	d, being the ap certifies that al best of his/her l nformance with federal govern d, by their signa f Raymond or o of this applicat	plicant, owner l information o cnowledge and a all applicable ment. ature below au other review ag ion.	or legal re- contained submits s regulation thorizes a gency to er	epresentative of the in this application is tr uch information for re ns, ordinances, and coo ny member of or autho nter the property for th	vie vie les oriz e
The undersigne property, hereby of and correct to the b by the Town for cor the town, state and The undersigned agent of the Town o purposes of review	d, being the ap certifies that al best of his/her l formance with federal govern d, by their signa f Raymond or o of this applicat	plicant, owner l information o cnowledge and a all applicable ment. ature below au other review ag ion.	or legal re- contained submits s regulation thorizes a gency to er	epresentative of the in this application is tr uch information for re ns, ordinances, and cod ny member of or autho iter the property for th	rue svie des oriz e
The undersigne property, hereby of and correct to the b by the Town for corr the town, state and The undersigned agent of the Town of purposes of review Print Name of Property Signature of Property	d, being the appresentation of his/her lands of the la	plicant, owner l information o cnowledge and a all applicable ment. ature below au other review ag ion. 	or legal re- contained submits s regulation thorizes a gency to er	epresentative of the in this application is tr uch information for re ns, ordinances, and coo ny member of or autho iter the property for th	vue evie les oriz e
The undersigne property, hereby of and correct to the b by the Town for corr the town, state and The undersigned agent of the Town of purposes of review Print Name of Property Signature of Property DUSTIN ROMA	d, being the appresented of his/her lands of the lands	plicant, owner l information o cnowledge and a all applicable ment. ature below au other review ag ion.	or legal re- contained submits s regulation thorizes a gency to er	epresentative of the in this application is tr uch information for re ns, ordinances, and cod ny member of or autho nter the property for th	rue svie les oriz
The undersigne property, hereby of and correct to the b by the Town for corr the town, state and The undersigned agent of the Town of purposes of review Print Name of Property DUSTIN ROMA Print Name of Owner'	d, being the appresented by the set of his/her land of his/her land of the set of his/her land of the set of his/her land of the set of his applicated of this applicated by Owner	plicant, owner l information o cnowledge and a all applicable ment. ature below au other review ag ion. Date	or legal re- contained submits s regulation thorizes a gency to er	epresentative of the in this application is tr uch information for re ns, ordinances, and cod ny member of or autho iter the property for th	rue evie les oriz
The undersigne property, hereby of and correct to the b by the Town for corr the town, state and The undersigned agent of the Town of purposes of review Print Name of Property DUSTIN ROMA Print Name of Owner' Dustin Production Pro-	d, being the appresented by the set of his/her landor formance with federal governed, by their signal f Raymond or of of this applicated by Owner	plicant, owner l information o cnowledge and a all applicable ment. ature below au other review ag ion. Date	or legal re- contained submits s regulation thorizes a gency to er	epresentative of the in this application is tr uch information for re ns, ordinances, and coo ny member of or autho iter the property for th	vue svie les oriz e
The undersigne property, hereby of and correct to the b by the Town for corr the town, state and The undersigned agent of the Town of purposes of review Print Name of Property DUSTIN ROMA Print Name of Owner' Dustin Ro	d, being the appresentation of this application of the second sec	plicant, owner l information of cnowledge and a all applicable ment. ature below au other review ag ion. Date	or legal re- contained submits s regulation thorizes a gency to er	presentative of the in this application is tr uch information for re ns, ordinances, and coo ny member of or autho iter the property for th	vue svie les oriz
The undersigne property, hereby of and correct to the b by the Town for corr the town, state and The undersigned agent of the Town of purposes of review Print Name of Property DUSTIN ROMA Print Name of Owner' Dustin Rod Signature of Owner's A	d, being the appresented by the set of his/her landor formance with federal governed by their signal f Raymond or of of this applicated of this applicated by Owner Owner Second	plicant, owner l information of cnowledge and a all applicable ment. ature below au other review ag ion. Date	or legal re- contained is submits solution in the second s	presentative of the in this application is tr uch information for re ns, ordinances, and cod ny member of or autho iter the property for th	vue svie les oriz
The undersigne property, hereby of and correct to the b by the Town for corr the town, state and The undersigned agent of the Town of purposes of review Print Name of Property DUSTIN ROMA Print Name of Owner' Dustin Rod Signature of Owner's A	d, being the appresentation of this application of the sector of the sec	plicant, owner l information of cnowledge and a all applicable ment. ature below au other review ag ion. Date Date	or legal re- contained submits s regulation thorizes a gency to er	presentative of the in this application is tr uch information for re ns, ordinances, and cod ny member of or autho iter the property for th	vue svie les oriz

July 8, 2021

Re: Webbs Mill Road Property, Raymond

I am the owner of property located off Webbs Mill Road in Raymond more particularly described as Lot 22-A on the Town of Raymond Tax Map 51. I have formed the Limited Liability Company Raymond Hills, LLC and I am writing this letter to state my intentions to transfer ownership of my land to Raymond Hills, LLC within the next few weeks. I am applying for Land Use Permits for a proposed 18-unit residential project on the property and am submitting all permit applications with Raymond Hills, LLC as the project applicant since they will be the owner and developer. I have also retained the services of DM Roma Consulting Engineers to act as authorized agent to apply for land use permits associated with development of the land.

Sincerely,

Timothy Clinton Member, Raymond Hills LLC

8/202/

Return to: Timothy Clinton Carol Clinton

224 Lakewood Road Casco, Maine 04015

DLN:1002140131814

WARRANTY DEED

KNOW ALL PERSONS BY THESE PRESENTS: That Peter Moreshead and Colleen Moreshead, of 15 Brookhaven Drive, Windham, ME 04062, for consideration paid grant to Timothy Clinton, of 224 Lakewood Road, Casco, ME 04015, with WARRANTY COVENANTS:

A certain lot or parcel of land, together with the buildings thereon, situated in the Town of Raymond, County of Cumberland and State of Maine, and bounded and described as follows:

Commencing on the easterly side of the County Road leading from the Panther's River Bridge to East Raymond at an iron pipe where formerly stood an apple tree, and running thence South 37° East as the compass ran in 1877 thirty-four (34) rods to two maple trees standing between the field and the wood lot which was formerly a pasture; thence South 23° West as the compass ran in 1877; to a pile of rocks and land formerly of O.G. Chipman, now of Henry Thomas; thence in a general Southeasterly direction by said Thomas land to a corner in said Thomas land; thence northeasterly by said Thomas land, formerly that of Joseph T. Sawyer, and by land of Willard Libby, to the range line between ranges two and three; thence in a general northwesterly direction on said range line to the County Road aforesaid; thence southwesterly by said County Road twelve (12) rods twenty-one and one half (21.5) links to the point of beginning.

Excepting and reserving herefrom all of that certain lot or parcel of land described in a deed of Abbie E. Knight and Bessie E. Thurlow and Jean F. Thurlow dated October 10, 1973 and duly recorded in the Cumberland County Registry of Deeds in Book 3600, Page 73.

Also conveyed herewith is a certain right of way for the purpose of laying a water pipe to and taking water from a well as more particularly set forth in an instrument dated November 21, 1962 and duly recorded in the said Registry in Book 2719, Page 39.

Also an easement from Peter J. Busque to Carolyn Kline and Earl Kline recorded in Book 27985, Page 262, and to be re-recorded.

Red Door Title □ 1 New Hampshire Avenue, Suite 320 Portsmouth NH 03801 □ (207) 358-7500

Excepting and reserving, however, from this conveyance the following land, with the improvements thereon, in Raymond, County of Cumberland and State of Maine, bounded and described as follows:

Beginning at a 1-1/2" iron pipe located on the apparent southeasterly sideline of Webbs Mills Road marking the westerly corner of land now or formerly of Busque as described in deed recorded Cumberland County Registry of Deeds (CCRD) Book 23003, Page 55; thence South 38° 40 ' 52" East along land of Busque, one hundred seventy-nine and sixty-eight hundredths (179.68) feet to an axle; thence South 38° 24' 48" East continuing along land of Busque, two hundred fifty-nine and fifty-three hundredths (259.53) feet to a 5/8" rebar marked PLS 2390; thence South 28° 50' 07" West across land of Kline, two hundred sixty-four and ninety-six hundredths (264.96) feet to a 30" maple tree at land now or formerly Thurlow & Libby as described in Book 20247, Page 313; thence North 35° 18' 19" West along land of Thurlow & Libby, two hundred sixty-seven and fifty-four hundredths (267.54) feet to a 5/8" rebar marked PLS 2390 at land now or formerly Thurlow & Libby as described in Book 20247, Page 315; thence North 62° 23' 23" East along land of Thurlow & Libby, thirty-eight and no/hundredths (38.00) feet to a 2" iron pipe; thence North 35° 16' 45" West continuing along land of Thurlow & Libby, two hundred eighty and thirty-seven hundredths (280.37) feet to a 5/8" rebar located on the apparent southeasterly sideline of Webbs Mills Road; thence North 65° 31' 39" East along the apparent southeasterly sideline of Webbs Mills Road, fifty-six and thirty-eight hundredths (56.38) feet; thence North 44° 25' 48" East continuing along the apparent southeasterly sideline of Webbs Mills Road, one hundred twenty-two and fifty-eight hundredths (122.58) feet to the point of beginning.

Bearings herein are magnetic of the year 2003.

Also hereby conveying as an appurtenance to the herein conveyed land a fifty (50) foot wide easement in common with others as is described in the Easement Deed from Peter J. Busque and Gorham Savings Bank to Carolyn R. Kline and Earl J. Kline of near or even date recorded in Cumberland County Registry of Deeds Book 28109, Page 207 and subject to the terms and conditions contained therein.

Meaning and intending to describe and convey the same premises conveyed to Peter Moreshead and Colleen Moreshead by virtue of a deed of Earl J. Kline and Carolyn R. Kline dated August 17, 2010 and recorded in the Cumberland County Registry of Deeds at Book 28109, Page 214.

Red Door Title 🗆 1 New Hampshire Avenue, Suite 320 Portsmouth NH 03801 🗆 (207) 358-7500

DOC :10226 BK:37806 PG:74 RECEIVED - RECORDED, CUMBERLAND COUNTY REGISTER OF DEEDS 02/11/2021, 10:27:14A Register of Deeds Nancy A. Lane E-RECORDED

Executed this 10 day of Full May, 2021. Peter Moreshead Norestees

Colleen Moreshead

State of VW THILDU County of

Then personally appeared before me on this 10 day of Julliug 2021 the said Peter Moreshead and Colleen Moreshead and acknowledged the foregoing to be their voluntary act and deed.

Remchietter

Notary Public Commission expiration: 02-08-2025

Red Door Title 🗆 1 New Hampshire Avenue, Suite 320 Portsmouth NH 03801 🗆 (207) 358-7500

Corporate Name Search

Information Summary

Subscriber activity report

This record contains information from the CEC database and is accurate as of: Wed Jul 07 2021 14:41:19. Please print or save for your records.

Legal Name	Charter Number	Filing Type	Status
RAYMOND HILLS LLC	20222267DC	LIMITED LIABILITY COMPANY (DOMESTIC)	GOOD STANDING
Filing Date	Expiration Date	Jurisdiction	
06/29/2021	N/A	MAINE	
Other Names		(A=Assumed ; F=Former)	

NONE

Clerk/Registered Agent

CAROL J. CLINTON 224 LAKEWOOD ROAD CASCO, ME 04071

Back to previous screen

New Search

Click on a link to obtain additional information.

You will need Adobe Acrobat version 3.0 or higher in order to view PDF files. If you encounter problems, visit the <u>troubleshooting page</u>.

If you encounter technical difficulties while using these services, please contact the <u>Webmaster</u>. If you are unable to find the information you need through the resources provided on this web site, please contact the Bureau's Reporting and Information Section at 207-624-7752 or <u>e-mail</u> or visit

n, City, RAY	Plantation NOND			Street, R WEBBS	oad Sul MILL F	odivision ROAD	PREPARED FOR Owner's Name DM ROMA (N/F CLINTON)			
SC	DIL DESC	RIPTION A	ND CLASSIF	CATION (L	ocatio	on of Obs	ervation Hol	es Shown	Above)	
Observa	ition Hole _'' Depth of	Organic Hori	zon Above Minera	□ Boring Soil	Obse	rvation Hole '' Depth	of Organic Horiz	on Above Mine	eral Soil	
οL	Texture	Consistency	Color 1	Mottling 1	0	Texture	Consistency	Color	Mottling	
			DARK BROWN			SANDY		BROWN		
	LOAMY SAND .	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	· YELLOW · · ·	0-0-0-00	inches)	- LOAMY -	- <u> </u>	YELLOW.		
F ACE		FRIABLE	DROWN		FACE (JAND	FRIABLE			
	<u> </u>	0 0 0 0 0 o	OLIVE	0 0 0 0	20 SUR	LOAMY	0 0 0 0 0 0 0	OLIVE	0 0 0 0 0	
ERAL S			BROWN		ERAL S	SAND	FTRU	BROWN		
30	- 000000000	0 0 0 0 0 0		0 0 0 0	NIW 30		FIKM		DISCINC	
BELOW	SAND				3ELOW	AND GRAVEL	D	GRAY		
40 •	FINE	FIRM	<u> </u>	COMMON, DISTINGT.	HIJAA	LOAMY .	0 0 0 0 0 0 0	LIGHT	0-	
	LOAMY					TO SAND		BROWN		

bser	vation Hole '' Depth _	of Organic Horiza	Test Pit on Above Min	eral Soil	Obse	rvation Hole Depth o	TP 4 f Organic Horiza	on Above Min	Boring eral Soil
a L	Texture	Consistency	Color	Mottling	0	Texture	Consistency	Color	Mottling
		· · · · · · · · · · · · · · · · · · ·				LOAMY		BROWN	
-	10044					FINE			
-	EDAMI					SAND			
-	SAND		TELLOW		(s			YELLOW	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 -	<u> </u>	<u></u>	BROWN		l pho 10	0 0 0 0 0	0 0 0 0 0 0 0 0	BROWN	
F	,				Cin	SANDY	FRIABLE	DROWN	-
		FRIABLE			ACE	LOAM			
-					IRF.				
20				<u> </u>	5 20				
-			LIGHT		GF				
H	SAND		YELLOW		N N	SAND		LIGHT	
-			BROWN		RAI	1		OLIVE	1122 B
30			DROWN		UN TO	LOAMY		BROWN	FEW. FAINT
	LOAMY			FEW, FAINT	2 30	FINE SAND			10. 21.) . 6
	FINE SAND		LIGHT	, <u> </u>	NO.	AND			
-	COARSE		GRAY		BEI	LOAMY VERY	FIRM		
-	SAND	FIRM			E	FINE SAND			
40 -	··· AND ····			0 0 0 0 0 0	du 40	- COARSE -		- LIGHT .	
-	LOAMY					SAND		GRAY	
F	ETNE					WITH GRAVEL			
F	SAND					11	1 DEFINENT	Dall Dral	

wn, C RA	ity, Plantatior	1		Street, R WEBBS	MILL R	odivision COAD	PREPARED FOR Owner's Name DM ROMA (N/F CLINTON)				
\square	SOIL DES	CRIPTION AN	ND CLASS	FICATION (1	_ocatio	on of Ob	servation Hol	es Shown	Above)		
Obse	ervation Hole ' Depth o	TP 5 of Organic Horiz	D Test Pit on Above Mine	Boring Bral Soil	Obse	rvation Hole	h of Organic Horiza	☐ Test Pit on Above Mine	Borin Borin eral Soil		
0	Texture	Consistency	Color	Mottling		Texture	Consistency	Color	1 Mottling		
			BROWN		0						
es)	LOAMY				(SS)						
Cinch	<u> </u>	0 0 0 0 0 0	"YELLOW"	0 0 0 0 0 0 0	01 Inche		· · · · · · · · · · · · · · · · · · ·		0 0 0 0 0		
FACE		FRIABLE	BROWN		ACE						
L SUR	0		<u> </u>	0 0 0 0 0	INS 20	0 0 0 0 0			0-		
Soli					SOIL						
ERAL	LOAMY		LIGHT		ERAL						
NIW 30	SAND		BROWN	0 0 0 0 0 0	NIW 30	<u> </u>	»	- o - o - o - o - o - o - o - o - o - o	0-0-0-0-0-0000000		
BELO			LIGHT		BELOV						
40 40	FINE SAND	FIRM	OLIVE BROWN ·····	FEW, FAINT	H1d30	<u> </u>		-0-0-0-0	0 0 0 0 0 0		
	GRAVELLY		LIGHT								
	COARSE		GRAY					1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			

50	SAND	LIMIT O	FEXCAVA	ation CS	58"		50						
	Soil Classif 3 Profile	ication C Condition	Slope %	Limiting Factor 37 ''		Ground Water Restrictive Layer Bedrock Pit Depth		Soil Class Profile	condition	Slope %	Limiting Factor		Ground Water Restrictive La Bedrock Pit Depth
Soil	Series Name:		Draina	ge Class:		Hydrologic Group:	Soil	Series Name:		Drain	age Class:		Hydrologic (
	SOIL DES	CRIPTI	on ane	D CLAS	SSI	FICATION (LC	ocatio	on of Ob	servatio	on Hol	es Shov	wn	Above)
Obse	rvation Hole _ Depth	of Organ	ic Horizon] Test F Above N	Pit Miner	Boring al Soil	Obse	rvation Hole '' Dept	h of Organ	ic Horiz	D Test Fon Above 1	^p it Miner	al Soil
0	Texture	Consis	stency	Color		Mottling	0	Texture	Consis	stency	Color		Mottling
3)							(8						
CE (inche		0 0 0	• • • •	0-0-0-	<u> </u>	-00-0-0-0-	E (inches		- 0 0 0 0	<u> </u>	<u> </u>	0.0	0 0 0 0
20RFA	0 0 0 0	0 0 0 0	-0000	0-0-0-0-	00	0 0 0 0 0 0	SURFAC 0		-0-0-0-0-		0-0-00		-00
RAL SOI							RAL SOIL						
NIM 30			• • • • •	0-0-0-	e o-	0 0 0 0 0 0	30 MINE				-0-0-0	• •	••••
PTH BEL							TH BELO						
40 90		0 0 0 0	·····	9 <u>0</u> 0 <u>0</u>	• •	0 0 0 0 0	40 43 0	<u> </u>		-0 -0 -0		• •-	0-0-0-0-0

RIGHT ELEVATION SCALE: 1/4" = 1'-0"

REAR ELEVATION SCALE: 1/4" = 1'-0"

LEFT ELEVATION SCALE: 1/4" = 1'-0"

SECOND FLOOR SCALE: 1/4" = 1'-0"

FRONT ELEVATION SCALE: 1/4" = 1'-0"

RIGHT ELEVATION SCALE: 1/4" = 1'-0"

 $\frac{\text{LEFT ELEVATION}}{\text{SCALE: } 1/4" = 1'-0"}$

-0 0

ļه ً

ā.

2

SCALE: 1/4" = 1'-0"

DM ROM

STORMWATER MANAGEMENT REPORT

RAYMOND HILLS VILLAGE WEBBS MILLS ROAD RAYMOND, MAINE

A. Narrative

Raymond Hills, LLC, the applicant, is proposing to develop an 8.8-acre parcel on Webbs Mills Road in Raymond, Maine. The project site is identified as Lot 22A on the Town of Raymond Assessor's Map 51 and is located in the Village Residential Zoning District. Access to the project site will be from Webbs Mills Road through an existing access easement on the adjacent property, which currently contains a substandard gravel road. The remaining site is primarily undeveloped woodland.

The development will include the construction of nine (9) duplex style buildings, creating 18 residential apartment units. The project will also include the construction of an approximately 1,200 linear foot driveway to access the units. The project will be served by public water, common subsurface wastewater disposal system and underground electrical, communication and cable.

In general, the property drains to the west, toward Webbs Mills Road. The flow is directed to a closed drainage system within the roadway and directly discharges into the end of Panther Run and into Sebago Lake. The Sebago Lake watershed is indicated as a Lake Watershed Most at Risk from Development by the Maine Department of Environmental Protection (MDEP).

B. Alterations to Land Cover

Based on the proposed design, the applicant will be responsible for creating approximately 68,437 square feet (1.57± acres) of impervious surface consisting of the proposed buildings and driveway pavement and approximately 131,551 square feet (3.02± acres) of landscaped area associated with lawn and landscaping, totaling approximately 199,988 square feet (4.59± acres) of developed area.

As this project is located within a Watershed of a Lake Most at Risk from Development and is generating over 20,000 square feet of impervious surface, a Stormwater Permit from the MDEP will need to be obtained. The stormwater design will be required to meet the Basic and Phosphorous Standards of the Chapter 500 Stormwater Management rules. Included in Section 4D(1) Phosphorous Standard of the MDEP Chapter 500, if the waterbody is not severely blooming and the total impervious surface generated by the project is less than 3 acres or less than 5 acres of total developed area, the General Standards can be met as an alternative to producing the phosphorous export calculations. As a result, the project will be required to meet the Basic and General Standards of MDEP Chapter 500.

In addition, the Town of Raymond Land Use Ordinance requires that the post-development stormwater runoff does not exceed the pre-development stormwater runoff for the 24-hour duration, 2-, 10- and 25-year frequency storm events.

The site is moderately sloped (5-13%) in the area where the buildings will be constructed with steeper slopes to the west adjacent to the property boundary. Soils on the property were determined utilizing the Medium Intensity Soil Maps for Cumberland County, Maine published by the Natural Resources Conservation Service. The soils boundaries and hydrologic soils group (HSG) designations are indicated on the watershed maps within the design plan set and a Soils Map has been included as Attachment 1 of this report. Test pits were also excavated in the location of the proposed BMPs. The test pit logs are also included in Attachment 1 of this report.

C. Methodology and Modeling Assumptions

The proposed stormwater management system has been designed utilizing Best Management Practices to maintain existing drainage patterns while providing stormwater quality improvement measures. The goal of the storm drainage system design is to remove potential stormwater pollutants from runoff generated by the development while providing attenuation of the peak rates of runoff leaving the site. The method utilized to predict the surface water runoff rates in this analysis is a computer program entitled HydroCAD, which is based on the same methods that were originally developed by the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, and utilized in the TR-20 modeling program. Peak rates of runoff are forecasted based upon land use, hydrologic soil conditions, vegetative cover, contributing watershed area, time of concentration, rainfall data, storage volumes of detention basins and the hydraulic capacity of structures. The computer model predicts the amount of runoff as a function of time, with the ability to include the attenuation effect due to dams, lakes, large wetlands, floodplains and constructed stormwater management basins. The input data for rainfalls with statistical recurrence frequencies of 2-, 10- and 25 years was obtained from Appendix H of the MDEP, Chapter 500 Stormwater Management, last revised in 2015. The National Weather Service developed four synthetic storm types to simulate rainfall patterns around the country. For analysis in Cumberland County, Maine, the type III rainfall pattern with a 24-hour duration is appropriate.

D. Basic Standards

The project is required by the MDEP to provide permanent and temporary Erosion Control Best Management Practices. These methods are outlined in detail in the plan set.

E. General Standard

The proposed project is required to meet the General Standards of Chapter 500 to provide water quality treatment of at least 95% of the project's new impervious surface and at least 80% of the project's total developed area. To meet this standard, an underdrained soil filter basin, two Filterra Bioretention Units and the requirement of installing roofline drip edge filters around each building have been incorporated into the stormwater infrastructure.

As a result of the stormwater infrastructure, approximately 96% of the entire project's projected new impervious surface and approximately 81% of the project's new developed area will be treated. The watershed map has been included in the design plan set and the calculations related to the General Standard have been included in this report as Attachment 2.

The sizing calculations for the underdrained soil filter basin have been included as Attachment 3 of this report. To demonstrate that the emergency overflow of the grassed underdrained soil filter basin has the required 1 foot of freeboard between the emergency spillway and the top of berm during the 25-year storm

event assuming failure of the other discharge devices and evidence of the drain down time of the basin is between 24 to 48 hours have been included in this section. The sizing calculations for the required channel protection volume storage, achieved by the subsurface chamber system, after the Filterra units has been included in Attachment 4 of this report. The sizing calculations for the Filterra units as prepared by Contech are also included in this section.

F. Flooding Analysis

As a requirement of the Town of Raymond Land Use Ordinance, the project will need to limit the peak rates of runoff to the pre-development condition during the 24-hour, 2-, 10- and 25-year frequency storm events. The project's stormwater design incorporates the integration of an underdrained filter basin and a subsurface chamber system to provide the required stormwater attenuation during the design storm events. Three study points were chosen to demonstrate the site design's compliance with the Town's standard.

The first study point (SP-1) is located at the intersection of the site's driveway and Webbs Mills Road. There is an existing catch basin that will be connected into by the subsurface chamber system. The flow that enters the basin is conveyed via storm drain southwesterly within Webbs Mills Road and eventually discharges into Panther Run and ultimately Sebago Lake.

The second study point (SP-2) is the location where runoff from both on and offsite drains across the western and northwestern property boundary onto the abutting property, now or formerly owned by Sharon Kitchens. Primarily, the flow onto this property isn't channelized and sheets across the parcel boundary. Drainage from this study point flows across the property, discharging into the closed drainage system within Webbs Mills Road and eventually into Panther Run and Sebago Lake.

The third study point (SP-3) is located along the southwestern property boundary where drainage from both on and offsite is collected in a natural drainage swale, onsite, and then flows across the property boundary, now or formerly owned by Jean Thurlow, Deborah Libby and Esther Small. Drainage from this study point flows across the property, discharging into the closed drainage system within Webbs Mills Road and eventually into Panther Run and Sebago Lake.

Table 1 – Peak Rates of Stormwater Runoff							
Study Point	2-Y	ear (cfs)	10-Y	ear (cfs)	25-Year (cfs)		
	Pre	Post	Pre	Post	Pre	Post	
SP1	0.53	0.67	1.32	2.03	2.05	4.66	
SP2	<0.01	<0.01	0.06	0.01	0.35	0.07	
SP3	< 0.01	0.04	0.04	0.14	0.38	0.38	

The following table summarizes the analysis:

As illustrated in Table 1, the project reduces or maintains the existing flow conditions at Study Point 2 in all storm events and in the larger storm at Study Point 3. There are increases at Study Point 1 due to the proposed driveway construction and re-direction of offsite runoff from Study Point 2 & 3 to Study Point 1. This flow discharges into the existing closed drainage system within Webbs Mills Road. The Town of Raymond will need to provide approval of these increases into their drainage system. There are also slight increases in the 2- and 10-year storm event at Study Point 3. We do not anticipate these increases in flow

to create any additional flooding conditions or increased erosion problems downstream as a result of this project.

The watershed maps showing pre-development and post-development drainage patterns are included in the plan set. The pre-development and post-development drainage computations performed with the HydroCAD software program are included as Attachment 5 of this report.

G. Maintenance of common facilities or property

The applicant will be responsible for the maintenance of the stormwater facilities and an Inspection, Maintenance and Housekeeping Plan for the project has been created and has been included in as Attachment 6 of this report.

Prepared by:

DM ROMA CONSULTING ENGINEERS

ayson R. Haskell

ว์ลyรัon R. Haskell P.E. Southern Maine Regional Manager

ATTACHMENT 1

SOILS MAP & BMP TEST PIT LOGS

USDA Natural Resources Conservation Service

Hydrologic Soil Group—Cumberland County and Part of Oxford County, Maine (aoi)

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BgB	Nicholville very fine sandy loam, 0 to 8 percent slopes	С	0.2	0.5%
ΗfΒ	Hartland very fine sandy loam, 3 to 8 percent slopes	В	0.2	0.3%
HhC	Hermon sandy loam, 8 to 15 percent slopes, very stony	A	27.6	55.9%
HhD	Hermon sandy loam, 15 to 35 percent slopes, very stony	A	5.9	11.9%
HkC	Hermon sandy loam, 8 to 20 percent slopes, extremely stony	A	12.3	25.0%
HIB	Hinckley loamy sand, 3 to 8 percent slopes	A	0.1	0.3%
HIC	Hinckley loamy sand, 8 to 15 percent slopes	A	0.3	0.6%
PbB	Paxton fine sandy loam, 3 to 8 percent slopes	С	2.7	5.5%
Totals for Area of Intere	st		49.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

AIM	onD	6		Street, R WEBBS	oad Subdivision	PREPARED FOR O	wner's Name OMA	
	SOIL DESCE	RIPTION A	ND CLASSIE	FICATION (I	ocation of O	hservation H	oles Shown	Above
Obs	ervation Hole	TP-6	Test Pit	Boring	Observation Ho	le <u>TP-7</u>	Test Pit	
	Texture	Consistency		Mottling .	Dep	Consistency	IZON ADOVE MINE	eral Soil
0	LOAMY SAND		DK BROWN	Motting	Existing	Grade at TP-6	3 = 307.00	
(1)		FRIABLE			Limiting F	actor=36"	001.00	.,
(inche:	COBBLY LOAMY	·····0···0····0····	YELL OW	• • • • •	Approx. G	Fround Water	Elev.=304	4.00+/-
IRFACE	SAND		BROWN		Bottom of Separatio	r B r Filter S n from GW =	ection=307 : 3.5' >1.5'	and not
20 SOIL SL		·000		·oooo	excessive	ly well draine	ed or well o	drained
ERAL S	COBBLY SAND		TGHT YELLOW		soils. An	impermeable	e liner has	not
NIM 30	······································		BROWN	0-0-0-0-0-0	s been blob		system.	
H BELO	LOAMY SAND				H BELO			
Ldg d	& COARSE SAND AND GRAVELL	FIRM	LIGHT GRAY	FEW DISTINCT	40 <u> </u>	··· LIMIT OF	EXCAVATIO 60"	N° • • • • • •
50					50			
1	Soil Classificati	on Slope	Limiting C Factor F 21 " D E	estrictive Layer	Soil Clas	ssification Slope	E Limiting Factor	Ground Water Restrictive Lo
So	Profile Conc	Jition /. Drain	nage Class:	it Depth Hydrologic Group:	Soil Series Name	Condition	inage Class:	Pit Depth Hydrologic (
AVAL	MDECK WAR	ANI IMODERAT	ELT WELL DRAINEL	<u>, </u>				
	SOIL DESCR	RIPTION AN	ND CLASSIF	ICATION (L	ocation of Ol	oservation Ha	les Shown	Above)
Obse	ervation Hole '' Depth of	TP-8 Organic Horiz	Test Pit on Above Miner	Boring Boring	Observation Hol " Dep	e TP-9 th of Organic Hori	Test Pit zon Above Mine	Borii Borii
0	Texture	Consistency	Color	Mottling	Texture	Consistency	Color	I Mottling
	Existing Gr	ade at TF	P-9 = 298.0)0+/-	FINE AN	D SOMEWHAT	BROWN	
(sau 10	Limiting Fa	ctor=32"			SAND	A FRIABLE	YELLOW	
E (inch	Approx. Gr	ound Wat	ter Elev.=2	95.33+/-		-00-0-0-0000000	BROWN	
AC	Separation	from GW	/ = 4.68' be	eo.os				
SUR	aroundwate	er. An im	permeable	liner has	S 20 VEKT COB	DL 6 - FIRM	OLIVE BROWN	
20IL SUR	groundwar				In ctory		1	
INERAL SOIL SUR	been propo	osed for th	nis system.		STONY	AND DY		
LOW MINERAL SOIL SUR	been propo	osed for th	nis system.	B	STONY LOAMY SAND 30 AND SAND LOAM	AND DY		
TH BELOW MINERAL SOIL SUR	been propo	LIMIT OF EXCA	his system.		STONY LOAMY SZ AND SANI BE H	ND Y	OLIVE GRAY	FEW
DEPTH BELOW MINERAL SOIL SUR 07 00 00 00 00	been propo	LIMIT OF EXCAN		· · · · · · · · · · · · · · · · · · ·	AND SAND AND SAND AND SAND LOAMY SAND	ND Y	OLIVE GRAY	FEW FAINT
DEPTH BELOW MINERAL SOIL SUR		LIMIT OF EXCA			AND SAND HILD AM SAND AND SAND LOAM SAND AND SAND LOAM	UND DY 	OLIVE GRAY XCAVATION	FEW
DEPTH BELOW MINERAL SOIL SUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Soil Classificatio	LIMIT OF EXCA	ATION	round Water	STONY LOAMY SL AND SANL AND SANL LOAM COAM Soli Class	LIMIT OF E	OLIVE GRAY CAVATION	FEW FAINT
02 DEPTH BELOW MINERAL SOIL SUR	Soil Classification	LIMIT OF EXCAN	ATION	round Water estrictive Layer edrock t Depth	50 Soil Clas	LIMIT OF E	OLIVE GRAY CCAVATION " Limiting Factor 32 "	FEW FAINT Ground Water Restrictive La Bedrock Pit Denth
20 DEPTH BELOW MINERAL SOIL SURI 50 Soi	been propo	Dised for th	ATION	round Water estrictive Layer edrock t Depth Hydrologic Group:	M STONY VALUE STONY LOAMY Steres SKERRY VA	LIMIT OF E	OLIVE GRAY KCAVATION " Limiting Factor (32 " Dinage Class: NTLEY WELL DRAIN	Ground Water Restrictive Lo Bedrock Pit Depth Hydrologic G EP C
20 06 DEPTH BELOW MINERAL SOL SUR 07 05 05 05	Soil Classificatio	LIMIT OF EXCA	ATION	round Water estrictive Layer edrock it Depth Hydrologic Group:	Soil Series Name Skerry (VA	LIMIT OF E	OLIVE GRAY KCAVATION " Limiting Factor 32 " inage Class: ATLEY WELL DRAIN	FEW FAINT Ground Water Restrictive Lo Bedrock Pit Depth Hydrologic G EDC

ATTACHMENT 2

GENERAL STANDARD CALCULATIONS

Stormwater Treatment Table

		New Road and			Existing/Offsite	Existing/Offsite	Existing				
	Total Watershed	Driveway Area	New Roof Area	New Landscaped	Impervious Area	Landscaping Area	Undeveloped	Treatment	New Paved Area	New Landscaped	Treatment
	Area (SF)	(SF)	(SF)	Area (SF)	(SF)*	(SF)*	Area (SF)	Provided	Treated (SF)	Area Treated (SF)	Device
WS-10	41,523	2,737	0	2,922	8,666	4,980	22,219	No	0	0	None
WS-11	33,980	8,779	0	4,744	0	0	20,457	Yes	8,779	4,744	Filterra F1
WS-12	12,904	7,530	1,336	4,038	0	0	0	Yes	7,530	4,038	Filterra F2
WS-20	171,977	0	0	5,783	0	0	166,194	No	0	0	None
WS-21	30,252	0	1,872	6,433	0	0	21,947	No	0	0	None
WS-30	799,120	0	0	6,936	0	0	792,184	No	0	0	None
WS-31	211,666	0	4,905	18,449	4,546	2,594	181,172	Yes	0	18,449	Filter Basin 1
WS-32	64,143	0	8,098	41,279	0	0	14,766	Yes	0	41,279	Filter Basin 1
WS-33	80,394	0	1,976	13,014	0	0	65,404	No	0	0	None
WS-34	25,400	7,464	5,157	12,780	0	0	0	Yes	7,464	12,780	Filter Basin 1
WS-35	33,756	10,957	7,627	15,173	0	0	0	Yes	10,957	15,173	Filter Basin 1
Total		37,466	30,971	131,551					34,729	96,463	

* The project is not taking credit for the Existing / Offsite impervious and landscaped areas, but are included in the BMP sizing calculations for each treatment device.

** All new buildings are required to install a roofline drip edge to provide treatment for rooftop impervious surface.

These areas in the watershed are treated in the dripedges and bypass the treatment devices downstream of the building.

New Impervious Area =	68,437
New Impervious Area Requiring Treatment (95%)	65,016
Provided New Impervious Treatment=	65,700
	96% New Impervious Area Treated
New Developed Area =	199,988
New Developed Area Requiring Treatment (80%)=	159,991
New Developed Area Treated=	162,163
	81% New Developed Area Treated

ATTACHMENT 3

UNDERDRAINED FILTER BASIN SIZING CALCULATIONS

Filter Basin FB-1

Tributary Impervious Area=	22,966 sf	(WS-31, 32, 34 & 35 Impervious Area)
Tributary Landscaped Area=	90,275 sf	(WS-31, 32, 34 & 35 Landscaped Area)

Water Quality Volume (WQV) Calculation

WQV (Required) = 1.0"xImpervious Area + 0.4"xLandscaped Area					
WQV (Required) = 4,923 cf					
Stage Stora	age Volume				
Elevation	Area (sf)	Storage (cf	.)		
310	3,000	0			
312	4,881	7,805			
313	5,836	13,156			
Outlet Elevation = 311		311.50)		
Storage Vo	olume Provided=		5,494	1 cf > Required	
Filter Botto	om Calculation				
Filter Area (Required) = 5%xImpervious Area + 2%xLandscaped Area					
Filter Area	(Required) =	2,954	sf		
Filter Area	Provided =	3,000	sf > Requi	red	
Underdrair	n Orifice Calculation				
Max Orifice Diameter (inches) = 0.035x^0.4599 (X=Filter Area (sf))					
Max Orific	e Diameter (Required)=	1.39	inches		
Orifice Dia	meter (Provided)=	1.00	inch		
SPILLWAY RUN - FILTER BASIN FB1

21006-Post

Type III 24-hr 25-Year Rainfall=5.80" Printed 7/14/2021 hs LLC Page 1

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

Subcatchment10:	Runoff Area=41,523 sf 16.11% Impervious Runoff Depth=2.56" Flow Length=520' Tc=17.4 min CN=69 Runoff=2.00 cfs 8,849 cf
Subcatchment11:	Runoff Area=33,980 sf 24.54% Impervious Runoff Depth=2.21" Flow Length=410' Tc=14.4 min CN=65 Runoff=1.50 cfs 6,249 cf
Subcatchment12:	Runoff Area=12,904 sf 64.60% Impervious Runoff Depth=3.50" Flow Length=333' Tc=6.0 min CN=79 Runoff=1.19 cfs 3,765 cf
Subcatchment 20:	Runoff Area=171,977 sf 0.00% Impervious Runoff Depth=0.11" Flow Length=628' Tc=21.4 min CN=32 Runoff=0.05 cfs 1,510 cf
Subcatchment21:	Runoff Area=30,252 sf 6.19% Impervious Runoff Depth=0.34" Flow Length=142' Tc=12.6 min CN=38 Runoff=0.07 cfs 861 cf
Subcatchment 30:	Runoff Area=799,120 sf 0.00% Impervious Runoff Depth=0.11" Flow Length=2,316' Tc=41.8 min CN=32 Runoff=0.25 cfs 7,017 cf
Subcatchment31:	Runoff Area=211,666 sf 4.47% Impervious Runoff Depth=0.25" Flow Length=1,036' Tc=22.0 min CN=36 Runoff=0.20 cfs 4,438 cf
Subcatchment32:	Runoff Area=64,143 sf 12.62% Impervious Runoff Depth=0.72" Flow Length=497' Tc=20.0 min CN=45 Runoff=0.51 cfs 3,864 cf
Subcatchment33:	Runoff Area=80,394 sf 2.46% Impervious Runoff Depth=0.21" Flow Length=409' Tc=23.0 min CN=35 Runoff=0.05 cfs 1,411 cf
Subcatchment34:	Runoff Area=25,400 sf 49.69% Impervious Runoff Depth=2.47" Flow Length=176' Tc=6.6 min CN=68 Runoff=1.61 cfs 5,224 cf
Subcatchment35:	Runoff Area=33,757 sf 54.27% Impervious Runoff Depth=2.74" Flow Length=224' Tc=12.7 min CN=71 Runoff=1.97 cfs 7,704 cf
Reach R1:	Avg. Flow Depth=0.06' Max Vel=2.01 fps Inflow=0.25 cfs 7,017 cf n=0.030 L=394.0' S=0.0799 '/' Capacity=208.12 cfs Outflow=0.25 cfs 7,017 cf
Pond CB1:	Peak Elev=293.19' Inflow=2.31 cfs 18,542 cf 15.0" Round Culvert n=0.013 L=4.0' S=0.0600 '/' Outflow=2.31 cfs 18,542 cf
Pond CB2:	Peak Elev=304.16' Inflow=1.19 cfs 3,765 cf 12.0" Round Culvert n=0.013 L=110.0' S=0.0636 '/' Outflow=1.19 cfs 3,765 cf
Pond CB3:	Peak Elev=321.79' Inflow=1.61 cfs 9,662 cf 12.0" Round Culvert n=0.013 L=14.0' S=0.0143 '/' Outflow=1.61 cfs 9,662 cf
Pond CB4:	Peak Elev=321.60' Inflow=3.33 cfs 17,366 cf 15.0" Round Culvert n=0.013 L=111.0' S=0.0050 '/' Outflow=3.33 cfs 17.366 cf

21006-Post Prepared by DM Roma Cor HydroCAD® 10.00-25 s/n 09237	Type III 24-hr 25-Year Rainfall=5.80" sulting Engineers Printed 7/14/2021 © 2019 HydroCAD Software Solutions LLC Page 2
Pond DMH1:	Peak Elev=296.91' Inflow=1.19 cfs 12,293 cf 12.0" Round Culvert n=0.013 L=198.0' S=0.0195 '/' Outflow=1.19 cfs 12,293 cf
Pond FB1:	Peak Elev=313.09' Storage=13,686 cf Inflow=3.46 cfs 21,229 cf Primary=0.00 cfs 0 cf Secondary=0.42 cfs 8,073 cf Outflow=0.42 cfs 8,073 cf
Pond FI1:	Peak Elev=323.41' Inflow=0.20 cfs 4,438 cf 12.0" Round Culvert n=0.013 L=123.0' S=0.0049 '/' Outflow=0.20 cfs 4,438 cf
Pond SD5:	Peak Elev=297.33' Inflow=0.30 cfs 8,527 cf 12.0" Round Culvert n=0.013 L=34.0' S=0.0079 '/' Outflow=0.30 cfs 8,527 cf
Pond ST: StormTech	Peak Elev=293.00' Storage=1,869 cf Inflow=2.31 cfs 18,542 cf Outflow=2.69 cfs 18,541 cf
Link SP1: Ex. CB	Inflow=4.66 cfs 27,390 cf Primary=4.66 cfs 27,390 cf
Link SP2:	Inflow=0.07 cfs 861 cf Primary=0.07 cfs 861 cf
Link SP3:	Inflow=0.46 cfs 9,484 cf Primary=0.46 cfs 9,484 cf

No flow from 12" stormdrain - only spillway. Peak Elev. = 313.09 Top of Berm=314.10 = 1.01' > 1' required DRAIN DOWN CALCULATION - FILTER BASIN FB1

21006-Post

Type III 24-hr CUST FB1 Rainfall=4.03"

С

Printed 7/14/2021

Prepared by DM Roma Co	nsulting Engineers	
HydroCAD® 10.00-25 s/n 0923	37 © 2019 HydroCAD	Software Solutions LL

Hydrograph for Pond FB1: (continued)

Timo	Inflow	Storago	Elovation	Outflow	Drimony	Secondary	
(houre)	(cfs)			(cfs)	riiilary (cfs)	Secondary (cfs)	
12.25			210.00				Storm event t
13.25	0.20	3,391	310.99	0.05	0.05	0.00	denerates en
13.50	0.24	3,574	311.04	0.05	0.05	0.00	
14.00	0.23	3,742	311.00	0.05	0.05	0.00	
14.00	0.21	3,033 4 031	311.12	0.05	0.05	0.00	meet channe
14.25	0.19	4,031	211.10	0.05	0.05	0.00	protection vol
14.50	0.10	4,107	211.10	0.05	0.05	0.00	
14.75	0.17	4,275	211.21	0.05	0.05	0.00	
15.00	0.10	4,304	211.24	0.05	0.05	0.00	
15.25	0.15	4,403	311.20	0.05	0.05	0.00	
15.50	0.14	4,570	211.20	0.05	0.05	0.00	
16.00	0.13	4,007	211.20	0.05	0.05	0.00	
16.00	0.12	4,729	211.22	0.05	0.05	0.00	
16.25	0.11	4,791	211.24	0.05	0.05	0.00	
16.50	0.11	4,040	211.20	0.05	0.05	0.00	
10.75	0.11	4,901	211.30	0.05	0.05	0.00	
17.00	0.10	4,901	211.27	0.05	0.05	0.00	
17.20	0.10	4,997	211.30	0.05	0.05	0.00	
17.50	0.09	5,039	311.39	0.05	0.05	0.00	
17.75	0.09	5,077	311.40	0.05	0.05	0.00	
10.00	0.06	5,110	311.41	0.05	0.05	0.00	
18.25	0.08	5,139	311.42	0.05	0.05	0.00	
18.50	0.08	5,100	311.42	0.05	0.05	0.00	
18.75	0.08	5,192	311.43	0.05	0.05	0.00	
19.00	0.08	5,217	311.44	0.05	0.05	0.00	
19.25	0.08	5,240	311.44	0.05	0.05	0.00	
19.50	0.07	5,203	311.45	0.05	0.05	0.00	
19.75	0.07	5,284 5,204	311.45	0.05	0.05	0.00	
20.00	0.07	5,304	311.40	0.05	0.05	0.00	
20.25	0.07	5,525	311.40	0.05	0.05	0.00	
20.50	0.07	5,54 I	311.40	0.05	0.05	0.00	
20.75	0.07	0,000 5 070	311.47	0.05	0.05	0.00	
21.00	0.07	0,0/0 E 200	311.47	0.05	0.05	0.00	
21.20	0.07	0,000 5,400	311.40	0.05	0.05	0.00	
21.30	0.06	5,40Z	311.40	0.05	0.05	0.00	
21.75	0.06	5,415 5,407	311.40	0.05	0.05	0.00	
22.00	0.06	0,427 5 429	311.40	0.05	0.05	0.00	
22.25	0.00	5,430	311.49	0.05	0.05	0.00	
22.30	0.06	0,447 5 456	311.49	0.05	0.05	0.00	
22.75	0.06	5,400 5,400	311.49	0.05	0.05	0.00	
23.00	0.06	5,403 5,403	311.49	0.05	0.05	0.00	
23.23	0.06	5,409 5,474	311.49	0.05	0.05	0.00	
23.30	0.05	5,474 5,479	311.50	0.05	0.05	0.00	
23.75	0.05	<u> </u>	311.50	0.05	0.05	0.00	Start Time when
24.00	0.05	5,400	311.50	0.05	0.05	0.00	otart mile when
24.23	0.02	5,408	311.49	0.05	0.05	0.00	water surface
24.3U	0.00	5,430	311.49	0.05	0.05	0.00	elevation is at
24.10	0.00	5,380	311.40 214 46	0.05	0.05	0.00	treatment volume
20.00	0.00	5,34Z	311.40 214 AE	0.05	0.05	0.00	alouation 244 50
20.20 25.50	0.00	5,297	311.43 214 44	0.05	0.05	0.00	elevation 311.50
20.0U	0.00	5,252	311.44	0.05	0.05	0.00	
20.70	0.00	5,∠U8	311.43	0.05	0.05	0.00	
20.00	0.00	5,163	311.42	0.05	0.05	0.00	
20.25	0.00	5.118	311.41	0.05	0.05	0.00	

Storm event that generates enough stormwater flow to meet channel protection volume

DRAIN DOWN CALCULATION - FILTER BASIN FB1

21006-Post

Type III 24-hr CUST FB1 Rainfall=4.03" Printed 7/14/2021

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

Hydrograph for Pond FB1: (continued)

Time (bours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Primary (cfs)	Secondary (cfs)	
53.00	0.00	769	310 25	0.04	0.04	0.00	
53.25	0.00	733	310.24	0.04	0.04	0.00	
53.50	0.00	696	310.23	0.04	0.04	0.00	
53.75	0.00	660	310.21	0.04	0.04	0.00	
54.00	0.00	624	310.20	0.04	0.04	0.00	
54.25	0.00	588	310.19	0.04	0.04	0.00	
54.50	0.00	552	310.18	0.04	0.04	0.00	
54.75	0.00	516	310.17	0.04	0.04	0.00	
55.00	0.00	480	310.16	0.04	0.04	0.00	
55.25	0.00	445	310.15	0.04	0.04	0.00	
55.50	0.00	409	310.13	0.04	0.04	0.00	
55.75	0.00	374	310.12	0.04	0.04	0.00	
56.00	0.00	338	310.11	0.04	0.04	0.00	
56.25	0.00	303	310.10	0.04	0.04	0.00	
56.50	0.00	268	310.09	0.04	0.04	0.00	
56.75	0.00	232	310.08	0.04	0.04	0.00	
57.00	0.00	197	310.07	0.04	0.04	0.00	
57.25 57.50	0.00	102	310.05	0.04	0.04	0.00	
57.50 57.75	0.00	120	310.04	0.04	0.04	0.00	
58.00	0.00	93	310.03	0.04	0.04	0.00	
58.00	0.00	20	310.02	0.04	0.04	0.00	
58 50	0.00	0	310.01	0.04	0.04	0.00	End time when
58 75	0.00	0	310.00	0.00	0.00	0.00	pond is omnty
59.00	0.00	0	310.00	0.00	0.00	0.00	pond is empty
59.25	0.00	0	310.00	0.00	0.00	0.00	
59.50	0.00	0 0	310.00	0.00	0.00	0.00	
59.75	0.00	0	310.00	0.00	0.00	0.00	
60.00	0.00	0	310.00	0.00	0.00	0.00	
60.25	0.00	0	310.00	0.00	0.00	0.00	
60.50	0.00	0	310.00	0.00	0.00	0.00	
60.75	0.00	0	310.00	0.00	0.00	0.00	
61.00	0.00	0	310.00	0.00	0.00	0.00	
61.25	0.00	0	310.00	0.00	0.00	0.00	
61.50	0.00	0	310.00	0.00	0.00	0.00	
61.75	0.00	0	310.00	0.00	0.00	0.00	
62.00	0.00	0	310.00	0.00	0.00	0.00	
62.25	0.00	0	310.00	0.00	0.00	0.00	
62.50	0.00	0	310.00	0.00	0.00	0.00	
62.75	0.00	0	310.00	0.00	0.00	0.00	
63.00	0.00	0	310.00	0.00	0.00	0.00	
63.50	0.00	0	310.00	0.00	0.00	0.00	
63.50	0.00	0	310.00	0.00	0.00	0.00	
64 00	0.00	0	310.00	0.00	0.00	0.00	
64 25	0.00	0	310.00	0.00	0.00	0.00	
64 50	0.00	0	310.00	0.00	0.00	0.00	
64 75	0.00	0	310.00	0.00	0.00	0.00	
65.00	0.00	Ő	310.00	0.00	0.00	0.00	
65.25	0.00	0 0	310.00	0.00	0.00	0.00	
65.50	0.00	0	310.00	0.00	0.00	0.00	
65.75	0.00	0	310.00	0.00	0.00	0.00	
66.00	0.00	0	310.00	0.00	0.00	0.00	
		Cool - Droin	down hat	woon 21 hr	0 8 10 hr	-	
					5 0X 40 IIIS	2	
		58.50hrs - 24	4.00 hrs =	34.5 hrs			
		5					

ATTACHMENT 4

FILTERRAS & STORMTECH CHAMBER SIZING CALCULATIONS

Raymond Hills Village Calculated by: JRH Printed 7/14/2021 Job #21006

Channel Protection Volume Sizing - Filterras

Subsurface Stormwater System

CPV (Required) = 1.0"xImpervious Area + 0.4"xLandscaped Area CPV=Channel Protection Volume

Tributary Watersheds =	WS-11 & 12
Tributary Impervious Area=	16,309 sf
Tributary Landscaped Area=	8,782 sf
CPV (Required)=	1,652 cf

Specified Chamber= Stormtech SC-310 CPV (Provided)=

See Stage Storage Table from HydroCAD

Type III 24-hr Stormtech Rainfall=4.20" Printed 7/8/2021

		Hydrogra	aph for Por	nd ST: Sto	ormTech (continued)
Time	Inflow	Storage	Elevation	Primary	
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	Storm event that
10.40	0.01	31	290.70	0.01	generates enough
10.50	0.02	34	290.71	0.01	stormwater flow to
10.60	0.02	38	290.71	0.01	meet channel
10.70	0.02	41	290.72	0.01	protection volume
10.80	0.02	45	290.73	0.01	protection volume
10.90	0.02	48	290.73	0.01	
11.00	0.03	52	290.74	0.02	
11.10	0.03	50 60	290.74	0.02	
11.20	0.03	65	290.75	0.02	
11.40	0.05	72	290.77	0.03	
11.50	0.06	80	290.79	0.03	
11.60	0.08	91	290.80	0.04	
11.70	0.14	113	290.84	0.06	
11.80	0.23	152	290.91	0.09	
11.90	0.35	220	291.02	0.12	
12.00	0.63	340	291.19	0.15	
12.10	1.19	614	291.43	0.19	
12.20	1.16	968	291.76	0.23	
12.30	0.98	1,200 1,402	292.00	0.27	
12.40	0.79	1,403	292.34	0.30	
12.00	0.44	1 698	292.07	0.33	Required Channel Protection Volume = 1,652 cf
12.70	0.34	1,718	292.73	0.33	Top of overflow weir in OCS-1 = 292.73
12.80	0.28	1,710	292.71	0.33	Provided CPV=1,718 cf > 1,652 cf
12.90	0.25	1,686	292.68	0.33	Start Time of Drain Down Calc=12.70 hrs
13.00	0.22	1,654	292.62	0.32	
13.10	0.20	1,616	292.56	0.32	
13.20	0.19	1,573	292.48	0.31	
13.30	0.18	1,529	292.41	0.30	
13.40	0.17	1,400	292.34	0.30	
13.50	0.17	1,441	292.20	0.29	
13.70	0.16	1,353	292.16	0.28	
13.80	0.15	1.309	292.11	0.27	
13.90	0.15	1,265	292.06	0.27	
14.00	0.14	1,221	292.01	0.26	
14.10	0.13	1,177	291.97	0.26	
14.20	0.13	1,132	291.92	0.25	
14.30	0.13	1,089	291.88	0.25	
14.40	0.12	1,045	291.83	0.24	
14.50	0.12	1,003	291.79	0.24	
14.00	0.12	902	291.75	0.23	
14.70	0.12	881	291.71	0.23	
14.00	0.11	841	291.64	0.22	
15.00	0.11	803	291.60	0.21	
15.10	0.11	765	291.56	0.21	
15.20	0.10	727	291.53	0.21	
15.30	0.10	690	291.50	0.20	
15.40	0.10	654	291.46	0.20	
15.50	0.09	619	291.43	0.19	

Hydrograph for Pond ST: StormTech (continued)

Time	Inflow	Storage	Elevation	Primary	
26.40					
30.40	0.00	3	290.00	0.00	
26.60	0.00	3	290.00	0.00	
30.00	0.00	ა ე	290.00	0.00	
30.70	0.00	3	290.00	0.00	
36.80	0.00	3	290.66	0.00	
36.90	0.00	3	290.66	0.00	
37.00	0.00	3	290.66	0.00	
37.10	0.00	3	290.66	0.00	
37.20	0.00	3	290.66	0.00	
37.30	0.00	3	290.66	0.00	
37.40	0.00	3	290.66	0.00	
37.50	0.00	3	290.66	0.00	
37.60	0.00	3	290.66	0.00	
37.70	0.00	3	290.66	0.00	
37.80	0.00	3	290.66	0.00	
37.90	0.00	3	290.66	0.00	
38.00	0.00	3	290.66	0.00	
38.10	0.00	3	290.66	0.00	Goal = Drain down between 24 hrs & 48 hrs
38.20	0.00	3	290.66	0.00	38.40hrs - 12.70 hrs = 25.7 hrs
38.30	0.00	3	290.66	0.00	
38.40	0.00	3	290.65	0.00	
38.50	0.00	3	290.65	0.00	4
38.60	0.00	3	290.65	0.00	
38.70	0.00	3	290.65	0.00	
38.80	0.00	3	290.65	0.00	
38.90	0.00	3	290.65	0.00	
39.00	0.00	3	290.65	0.00	
39.10	0.00	3	290.65	0.00	
39.20	0.00	3	290.65	0.00	
39.30	0.00	3	290.65	0.00	
39.40	0.00	3	290.65	0.00	
39.50	0.00	3	290.65	0.00	
39.60	0.00	3	290.65	0.00	
39.70	0.00	3	290.65	0.00	
39.80	0.00	3	290.65	0.00	
39.90	0.00	3	290.65	0.00	
40.00	0.00	3	290.65	0.00	
40.10	0.00	3	290.65	0.00	
40.20	0.00	3	290.65	0.00	
40.30	0.00	3	200.00	0.00	
40.00	0.00	3	200.00	0.00	
40.50	0.00	3	200.00	0.00	
40.60	0.00	3	200.00	0.00	
40.00	0.00	3	200.65	0.00	
40.70	0.00	3	200.65	0.00	
40.00	0.00	ວ ຈ	200.00	0.00	
40.90	0.00	ა ა	290.00	0.00	
41.00	0.00	3	200.00	0.00	
41.10	0.00	2	290.00	0.00	
41.20 11.20	0.00	2	290.00	0.00	
41.30	0.00	2	290.00	0.00	
41.4U 41.50	0.00	2	290.00	0.00	
41.30	0.00	2	290.00	0.00	

Design Parameters:

- MEDEP WQ Design Storm = 0.95" of Rainfall
- Filterra Media Flow Rate = 140 in/hr
- Allowable Ponding in Filterra = 9 inches

Design Summary:

Utilizing HydroCAD software, a hydrograph can be derived to represent the MEDEP's WQ design storm by modelling a 0.95" Type III – 24 hour rain event (Figure 1 for each system). This storm can then be routed through an appropriately sized Filterra unit. Because the Filterra system can provide up to 9 inches of ponding, some flow attenuation is possible, and the Filterra system is able to accommodate a portion of the water quality volume in the head space above the media and release it at the system's design flow rate. The hydrograph in Figure 2 for each system illustrates this concept.

Unit	Area Impervious (sf)	CN	Area Pervious (sf)	CN	MEDEP Treatment Flow (cfs)	Filterra Media Bed (ft x ft)	Vault Size (ft x ft)	Filterra Model	Ponding Depth (inches)
Filterra #1	8,338	98	25,642	39	0.13	8x4	8x4	FT0804 - Offline	4.08
Filterra #2	8,336	98	4,568	39	0.16	8x4	8x4	FT0804 - Offline	9.00

The following are the hydrographs for each unit:

Filterra #1:

Figure 1. Inflow rate during the WQ Event.

Figure 2. Inflow rate during WQ storm event compared with the Filterra outflow rate, accounting for 9" maximum ponding depth within the unit.

Filterra #2:

Figure 1. Inflow rate during the WQ Event.

Figure 2. Inflow rate during WQ storm event compared with the Filterra outflow rate, accounting for 9" maximum ponding depth within the unit.

Thank you for the opportunity to present this to you and your client. This letter provides confirmation that each Filterra system is appropriately sized to comply with the Filterra approval letter issued by Maine Department of Environmental Protection. Please do not hesitate to contact me should you have any additional questions.

Sincerely,

Joshua Stackhouse Contech Engineered Solutions, LLC. (207) 219-9110 jstackhouse@conteches.com

ATTACHMENT 5

HYDROCAD OUTPUT

21006-Pre	Тур
Prepared by DM Roma Consulting Engineers	
HvdroCAD® 10.00-25 s/n 09237 © 2019 HvdroCAD Software Solution	ns LL

Subcatchment1:	Runoff Area=40,985 sf 9.91% Impervious Runoff Depth=2.65" Flow Length=520' Tc=17.4 min CN=70 Runoff=2.05 cfs 9,042 cf
Subcatchment2:	Runoff Area=243,110 sf 0.00% Impervious Runoff Depth=0.30" Flow Length=642' Tc=21.8 min CN=37 Runoff=0.35 cfs 5,981 cf
Subcatchment3:	Runoff Area=1,220,978 sf 0.37% Impervious Runoff Depth=0.11" Flow Length=2,497' Tc=41.8 min CN=32 Runoff=0.38 cfs 10,721 cf
Link SP1: Ex. CB	Inflow=2.05 cfs 9,042 cf
	Primary=2.05 cfs 9,042 cf
Link SP2:	Inflow=0.35 cfs 5,981 cf
	Primary=0.35 cfs 5,981 cf
Link SP3:	Inflow=0.38 cfs 10,721 cf
	Primary=0.38 cfs 10,721 cf

Summary for Subcatchment 1:

Runoff = 2.05 cfs @ 12.25 hrs, Volume= 9,042 cf, Depth= 2.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.80"

	A	rea (sf)	CN E	Description								
		8,427	32 V	Voods/gras	ss comb., G	Good, HSG A						
		14,283	72 V	Woods/grass comb., Good, HSG C								
		0	39 >	75% Grass cover, Good, HSG A								
		0	74 >	75% Grass cover, Good, HSG C								
*		7,781	74 E	Existing >7	5% Grass c	cover, Good, HSG C						
*		0	98 F	proposed p	aved roads	s & driveways						
*		2,833	98 E	xisting pav	ved road							
*		0	96 F	roposed g	ravel surfa	Ce						
- -		6,433	96 E	-xisting gra	ivel surface							
*		0	98 F	roposed w	alls							
*		1 220	98 F	roposed in								
_		1,220	<u>90 E</u>	XISUNG TOC								
		40,985	70 V	veignied A	verage							
		1 061	5	0.09% Pe								
		4,001	e	.91% impe		a						
	Тс	Lenath	Slope	Velocitv	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	14.9	150	0.1167	0.17		Sheet Flow, Seg A to B						
						Woods: Light underbrush n= 0.400 P2= 3.10"						
	0.7	76	0.1449	1.90		Shallow Concentrated Flow, Seg B to C						
						Woodland Kv= 5.0 fps						
	0.3	72	0.0629	4.04		Shallow Concentrated Flow, Seg C to D						
						Unpaved Kv= 16.1 fps						
	1.3	129	0.1087	1.65		Shallow Concentrated Flow, Seg D to E						
						Woodland Kv= 5.0 fps						
	0.0	9	0.1300	5.80		Shallow Concentrated Flow, Seg E to F						
	0.0	04	0 0244	0.07	74.00	Unpaved KV= 16.1 fps						
	0.2	84	0.0344	8.27	71.33							
						B01.00 - 2.00 D - 1.50 Z - 2.0 & 5.07 T0p.00 - 9.50						
	17 /	520	Total			n- 0.000 Lann, grassed & winding						
	17.4	520	rotai									

Summary for Subcatchment 2:

Runoff = 0.35 cfs @ 12.67 hrs, Volume= 5,981 cf, Depth= 0.30"

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

A	rea (sf)	CN D	Description		
*	 6,574 96 Existing Gravel Surface 				e
	5,028	39 >	75% Gras	s cover, Go	bod, HSG A
	3,113	74 >	75% Gras	s cover, Go	ood, HSG C
2	214,964	32 V	Voods/gras	ss comb., G	Good, HSG A
	13,431	72 V	Voods/gras	ss comb., G	Good, HSG C
2	243,110	37 V	Veighted A	verage	
2	243,110	1	00.00% Pe	ervious Are	а
_					
ŢĊ	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cts)	
11.2	87	0.0800	0.13		Sheet Flow, A TO B
					Woods: Light underbrush n= 0.400 P2= 3.10"
5.6	63	0.2400	0.19		Sheet Flow, B TO C
					Woods: Light underbrush n= 0.400 P2= 3.10"
2.3	154	0.0486	1.10		Shallow Concentrated Flow, C TO D
4 5	470	0 4 5 0 0	4.04		Woodland Kv= 5.0 fps
1.5	178	0.1500	1.94		Shallow Concentrated Flow, D TO E
0.0	100	0.0500	2 50		vvoodiand KV= 5.0 fps
0.8	122	0.2500	2.50		Shallow Concentrated Flow, E TO F
0.1	15	0 0 0 0 0 0	2 20		Shallow Concentrated Flow FTO C
0.1	15	0.0200	2.20		Shallow Concentrated Flow, F TO G
03	22	0 0500	1 1 2		Shallow Concentrated Flow C TO H
0.5	23	0.0000	1.12		Woodland Ky= 5.0 fps

21.8 642 Total

Summary for Subcatchment 3:

D	_	0.00 - fr @		10 701 of Double 0 11
Runott	=	0.38 CTS @	15.64 nrs, Volume=	$10,721$ cf, Deptn= 0.11°

	Area (sf)	CN	Description
	1,213,837	32	Woods/grass comb., Good, HSG A
	2,595	39	>75% Grass cover, Good, HSG A
*	4,546	98	Existing House and Driveway
	1,220,978	32	Weighted Average
	1,216,432		99.63% Pervious Area
	4,546		0.37% Impervious Area

21006-Pre

 Type III 24-hr
 25-Year Rainfall=5.80"

 Printed
 7/14/2021

 hs LLC
 Page 5

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.5	150	0.1500	0.19		Sheet Flow, Seg A to B
						Woods: Light underbrush n= 0.400 P2= 3.10"
	5.1	264	0.0303	0.87		Shallow Concentrated Flow, Seg B to C
						Woodland Kv= 5.0 fps
	6.9	296	0.0203	0.71		Shallow Concentrated Flow, Seg C to D
						Woodland Kv= 5.0 fps
	7.4	310	0.0193	0.69		Shallow Concentrated Flow, Seg D to E
						Woodland Kv= 5.0 fps
	6.9	575	0.0766	1.38		Shallow Concentrated Flow, Seg E to F
		400	0 4 5 0 0			Woodland Kv= 5.0 fps
	0.3	102	0.1569	6.38		Shallow Concentrated Flow, Seg F to G
		000	0.0400	5.04	040.04	Unpaved KV= 16.1 fps
	1.1	338	0.0402	5.34	343.04	Channel Flow, Seg G to H
						Area = 64.3 st Perim = 129.6 r = 0.50°
	0.4	040	0.0400	0.00	111 10	n= 0.035 Earlin, dense weeds
	0.4	242	0.0400	0.90	141.19	
						D01.09 - 5.00 D - 1.50 Z - 5.0 / 10p.09 - 16.00
	0.2	220	0 1000	21.04	504.06	Tran/Voo/Poot Channel Flow, Sog I to I
	0.2	220	0.1000	21.04	504.90	Bot W-2 00' D-3 00' 7- 2 0 '/' Top W-14 00'
						n = 0.030 Farth grassed & winding
-	/1 0	2 /07	Total			
	41.0	2,491	iulai			

Summary for Link SP1: Ex. CB

Inflow Are	ea =	40,985 sf,	9.91% Impervious,	Inflow Depth = 2.65"	for 25-Year event
Inflow	=	2.05 cfs @	12.25 hrs, Volume=	9,042 cf	
Primary	=	2.05 cfs @	12.25 hrs, Volume=	9,042 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link SP2:

Inflow .	Area	a =		243,110 sf	, 0.00% Ir	npervious,	Inflow Depth =	0.30"	for 25	-Year event
Inflow		=	0.	.35 cfs @	12.67 hrs,	Volume=	5,981 c	f		
Primar	y	=	0.	.35 cfs @	12.67 hrs,	Volume=	5,981 c	f, Atter	n= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link SP3:

Inflow.	Area	=	1,220	,978 sf,	0.37% Ir	npervious,	Inflow Depth =	0	.11" fo	or 25	-Year eve	ent
Inflow		=	0.38	cfs @	15.64 hrs,	Volume=	10,721	cf				
Primar	y	=	0.38	cfs @	15.64 hrs,	Volume=	10,721	cf,	Atten=	0%,	Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

21006-Pre	T_{j}
Prepared by DM Roma Consulting Engineers	-
HydroCAD® 10 00-25 s/n 09237 © 2019 HydroCAD Software Solutions	s I I

Subcatchment1:	Runoff Area=40,985 sf 9.91% Impervious Runoff Depth=0.77" Flow Length=520' Tc=17.4 min CN=70 Runoff=0.53 cfs 2,632 cf
Subcatchment2:	Runoff Area=243,110 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=642' Tc=21.8 min CN=37 Runoff=0.00 cfs 0 cf
Subcatchment3:	Runoff Area=1,220,978 sf 0.37% Impervious Runoff Depth=0.00"
	Flow Length=2,497' Tc=41.8 min CN=32 Runoff=0.00 cfs 0 cf
Link SP1: Ex. CB	Inflow=0.53 cfs 2,632 cf
	Primary=0.53 cfs 2,632 cf
Link SP2:	Inflow=0.00 cfs 0 cf
	Primary=0.00 cfs 0 cf
Link SP3	Inflow=0.00 cfs_0 cf
	Primary=0.00 cfs 0 cf

21006-Pre	Тур
Prepared by DM Roma Consulting Engineers	
HvdroCAD® 10.00-25 s/n 09237 © 2019 HvdroCAD Software Solution	ns LL

Subcatchment1:	Runoff Area=40,985 sf 9.91% Impervious Runoff Depth=1.74" Flow Length=520' Tc=17.4 min CN=70 Runoff=1.32 cfs 5,960 cf
Subcatchment2:	Runoff Area=243,110 sf 0.00% Impervious Runoff Depth=0.08" Flow Length=642' Tc=21.8 min CN=37 Runoff=0.06 cfs 1,587 cf
Subcatchment3:	Runoff Area=1,220,978 sf 0.37% Impervious Runoff Depth=0.01" Flow Length=2,497' Tc=41.8 min CN=32 Runoff=0.04 cfs 577 cf
Link SP1: Ex. CB	Inflow=1.32 cfs 5,960 cf Primary=1 32 cfs 5 960 cf
Link SP2:	Inflow=0.06 cfs 1,587 cf Primary=0.06 cfs 1,587 cf
Link SP3:	Inflow=0.04 cfs 577 cf Primary=0.04 cfs 577 cf

Subcatchment10:	Runoff Area=41,523 sf 16.11% Impervious Runoff Depth=2.56" Flow Length=520' Tc=17.4 min CN=69 Runoff=2.00 cfs 8,849 cf
Subcatchment11:	Runoff Area=33,980 sf 24.54% Impervious Runoff Depth=2.21" Flow Length=410' Tc=14.4 min CN=65 Runoff=1.50 cfs 6,249 cf
Subcatchment12:	Runoff Area=12,904 sf 64.60% Impervious Runoff Depth=3.50" Flow Length=333' Tc=6.0 min CN=79 Runoff=1.19 cfs 3,765 cf
Subcatchment20:	Runoff Area=171,977 sf 0.00% Impervious Runoff Depth=0.11" Flow Length=628' Tc=21.4 min CN=32 Runoff=0.05 cfs 1,510 cf
Subcatchment21:	Runoff Area=30,252 sf 6.19% Impervious Runoff Depth=0.34" Flow Length=142' Tc=12.6 min CN=38 Runoff=0.07 cfs 861 cf
Subcatchment30:	Runoff Area=799,120 sf 0.00% Impervious Runoff Depth=0.11" Flow Length=2,316' Tc=41.8 min CN=32 Runoff=0.25 cfs 7,017 cf
Subcatchment31:	Runoff Area=211,666 sf 4.47% Impervious Runoff Depth=0.25" Flow Length=1,036' Tc=22.0 min CN=36 Runoff=0.20 cfs 4,438 cf
Subcatchment32:	Runoff Area=64,143 sf 12.62% Impervious Runoff Depth=0.72" Flow Length=497' Tc=20.0 min CN=45 Runoff=0.51 cfs 3,864 cf
Subcatchment 33:	Runoff Area=80,394 sf 2.46% Impervious Runoff Depth=0.21" Flow Length=409' Tc=23.0 min CN=35 Runoff=0.05 cfs 1,411 cf
Subcatchment34:	Runoff Area=25,400 sf 49.69% Impervious Runoff Depth=2.47" Flow Length=176' Tc=6.6 min CN=68 Runoff=1.61 cfs 5,224 cf
Subcatchment35:	Runoff Area=33,757 sf 54.27% Impervious Runoff Depth=2.74" Flow Length=224' Tc=12.7 min CN=71 Runoff=1.97 cfs 7,704 cf
Reach R1:	Avg. Flow Depth=0.06' Max Vel=2.01 fps Inflow=0.25 cfs 7,017 cf n=0.030 L=394.0' S=0.0799 '/' Capacity=208.12 cfs Outflow=0.25 cfs 7,017 cf
Pond CB1:	Peak Elev=293.19' Inflow=2.31 cfs 18,542 cf 15.0" Round Culvert n=0.013 L=4.0' S=0.0600 '/' Outflow=2.31 cfs 18,542 cf
Pond CB2:	Peak Elev=304.16' Inflow=1.19 cfs 3,765 cf 12.0" Round Culvert n=0.013 L=110.0' S=0.0636 '/' Outflow=1.19 cfs 3,765 cf
Pond CB3:	Peak Elev=321.79' Inflow=1.61 cfs 9,662 cf 12.0" Round Culvert n=0.013 L=14.0' S=0.0143 '/' Outflow=1.61 cfs 9,662 cf
Pond CB4:	Peak Elev=321.60' Inflow=3.33 cfs 17,366 cf 15.0" Round Culvert n=0.013 L=111.0' S=0.0050 '/' Outflow=3.33 cfs 17,366 cf

21006-Post Prepared by DM Roma C HydroCAD® 10.00-25 s/n 09	Type III 24-hr 25-Year Rainfall=5.80"Consulting EngineersPrinted 7/14/2021237 © 2019 HydroCAD Software Solutions LLCPage 3
Pond DMH1:	Peak Elev=296.91' Inflow=1.19 cfs 12,293 cf 12.0" Round Culvert n=0.013 L=198.0' S=0.0195 '/' Outflow=1.19 cfs 12,293 cf
Pond FB1:	Peak Elev=312.81' Storage=12,071 cf Inflow=3.46 cfs 21,229 cf Primary=0.34 cfs 21,231 cf Secondary=0.00 cfs 0 cf Outflow=0.34 cfs 21,231 cf
Pond FI1:	Peak Elev=323.41' Inflow=0.20 cfs 4,438 cf 12.0" Round Culvert n=0.013 L=123.0' S=0.0049 '/' Outflow=0.20 cfs 4,438 cf
Pond SD5:	Peak Elev=297.33' Inflow=0.30 cfs 8,527 cf 12.0" Round Culvert n=0.013 L=34.0' S=0.0079 '/' Outflow=0.30 cfs 8,527 cf
Pond ST: StormTech	Peak Elev=293.00' Storage=1,869 cf Inflow=2.31 cfs 18,542 cf Outflow=2.69 cfs 18,541 cf
Link SP1: Ex. CB	Inflow=4.66 cfs 27,390 cf Primary=4.66 cfs 27,390 cf
Link SP2:	Inflow=0.07 cfs 861 cf Primary=0.07 cfs 861 cf
Link SP3:	Inflow=0.38 cfs 22,642 cf Primary=0.38 cfs 22,642 cf

Summary for Subcatchment 10:

Runoff = 2.00 cfs @ 12.25 hrs, Volume= 8,849 cf, Depth= 2.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.80"

A	rea (sf)	CN E	Description					
	8,090	32 V	Voods/gras	ss comb., G	Good, HSG A			
	14,129	72 V	Noods/grass comb., Good, HSG C					
	2,922	39 >	•75% Gras	s cover, Go	ood, HSG A			
	0	74 >	•75% Gras	s cover, Go	ood, HSG C			
*	4,980	74 E	xisting >7	5% Grass o	cover, Good, HSG C			
*	2,737	98 F	Proposed p	aved roads	s & driveways			
*	2,726	98 E	existing pay	ved road				
т х	0	96 F	roposed g	ravel surfa	ce			
т х	4,/11	96 E	xisting gra	ivel surface				
^ +	0	98 F	roposed w	/alls				
*	0	98 F	roposed ro	DOIS				
	1,228	<u>98 E</u>	Existing roc	DIS				
	41,523	69 V	Veighted A	verage				
	34,832	8	3.89% Per	vious Area				
	6,691	ſ	16.11% Impervious Area					
Тс	l enath	Slone	Velocity	Canacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description			
14.9	150	0 1167	0 17	(0.0)	Sheet Flow, Seg A to B			
11.0	100	0.1107	0.17		Woods: Light underbrush $n=0.400$ P2= 3.10"			
0.7	76	0.1449	1.90		Shallow Concentrated Flow. Seg B to C			
-	-				Woodland Kv= 5.0 fps			
0.3	72	0.0629	4.04		Shallow Concentrated Flow, Seg C to D			
					Unpaved Kv= 16.1 fps			
1.3	129	0.1087	1.65		Shallow Concentrated Flow, Seg D to E			
					Woodland Kv= 5.0 fps			
0.0	9	0.1300	5.80		Shallow Concentrated Flow, Seg E to F			
					Unpaved Kv= 16.1 fps			
0.2	84	0.0344	8.27	71.33	Trap/Vee/Rect Channel Flow, Seg F to G			
					Bot.W=2.00' D=1.50' Z= 2.0 & 3.0 '/' Top.W=9.50'			
					n= 0.030 Earth, grassed & winding			
17.4	520	Total						
			-	-				

Summary for Subcatchment 11:

Runoff = 1.50 cfs @ 12.21 hrs, Volume= 6,249 cf, Depth= 2.21"

 Type III 24-hr
 25-Year Rainfall=5.80"

 Printed
 7/14/2021

 ns LLC
 Page 5

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Description				
		10,757	32	Woods/gras	ss comb., G	Good, HSG A		
		9,700	72	Woods/gras	ss comb., G	Good, HSG C		
		1,168	39	>75% Gras	s cover, Go	bod, HSG A		
		3,576	74	>75% Gras	s cover, Go	ood, HSG C		
*		7,549	98	Proposed p	aved roads	s w/curbs & sewers		
*		441	96	Proposed g	ravel surfa	ce		
*		789	98	Proposed w	/alls			
		33,980	65	Weighted A	verage			
		25,642		75.46% Pei	rvious Area			
		8,338		24.54% Impervious Area				
	_				_			
	Tç	Length	Slope	e Velocity	Capacity	Description		
(I	min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	13.2	150	0.1567	0.19		Sheet Flow, Seg A to B		
						Woods: Light underbrush n= 0.400 P2= 3.10"		
	0.7	85	0.1679) 2.05		Shallow Concentrated Flow, Seg B to C		
						Woodland Kv= 5.0 fps		
	0.0	18	0.4697	11.03		Shallow Concentrated Flow, Seg C to D		
	~ ~	47				Unpaved Kv= 16.1 tps		
	0.2	47	0.0365	3.88		Shallow Concentrated Flow, Seg D to E		
	~ ~	440	0.0040		44.07	Paved Kv= 20.3 tps		
	0.3	110	0.0219	6.64	41.67	Irap/Vee/Rect Channel Flow, Seg E to F		
						BOT. $M = 0.00^{\circ}$ D=0.50° Z= 50.0 & 0.2 7° 10p. W=25.10°		
						n= 0.013 Asphall, smooth		

14.4 410 Total

Summary for Subcatchment 12:

3,765 cf, Depth= 3.50"

Runoff = 1.19 cfs @ 12.09 hrs, Volume=

	Area (sf)	CN	Description
	0	32	Woods/grass comb., Good, HSG A
	0	72	Woods/grass comb., Good, HSG C
	4,038	39	>75% Grass cover, Good, HSG A
	0	74	>75% Grass cover, Good, HSG C
*	6,757	98	Proposed paved roads w/curbs & sewers
*	530	96	Proposed gravel surface
*	243	98	Proposed walls
*	1,336	98	Proposed roofs
	12,904	79	Weighted Average
	4,568		35.40% Pervious Area
	8,336		64.60% Impervious Area

Type III 24-hr 25-Year Rainfall=5.80" Printed 7/14/2021

Page 6

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.0	90	0.0248	1.44		Sheet Flow, Seg A to B Smooth surfaces n= 0.011 P2= 3.10"
0.3	243	0.0895	13.42	84.23	Trap/Vee/Rect Channel Flow, Seg B to C Bot.W=0.00' D=0.50' Z= 50.0 & 0.2 '/' Top.W=25.10' n= 0.013 Asphalt, smooth
1.3	333	Total, I	ncreased t	o minimum	Tc = 6.0 min

333 Total, Increased to minimum Tc = 6.0 min

Summary for Subcatchment 20:

0.05 cfs @ 15.29 hrs, Volume= 1,510 cf, Depth= 0.11" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.80"

	Area (sf)	CN I	Description						
*	5,783	39 I	New Grass	Α					
	166,194	32	32 Woods/grass comb., Good, HSG A						
	171,977 32 Weighted Average								
	171,977		100.00% Pe	ervious Are	а				
Тс	Length	Slope	Velocity	Capacity	Description				
(min) (feet)	(ft/ft)	(ft/sec)	(CIS)					
11.2	2 87	0.0800	0.13		Sheet Flow, A TO B				
					Woods: Light underbrush n= 0.400 P2= 3.10"				
5.6	63	0.2400	0.19		Sheet Flow, B TO C				
					Woods: Light underbrush n= 0.400 P2= 3.10"				
2.3	3 154	0.0486	1.10		Shallow Concentrated Flow, C TO D				
					Woodland Kv= 5.0 fps				
1.5	5 178	0.1500	1.94		Shallow Concentrated Flow, D TO E				
					Woodland Kv= 5.0 fps				
0.7	7 99	0.2500	2.50		Shallow Concentrated Flow, E TO F				
					Woodland Kv= 5.0 fps				
0.1	47	0.0800	14.88	208.25	Trap/Vee/Rect Channel Flow, F TO G				
					Bot.W=2.00' D=2.00' Z= 3.0 & 2.0 '/' Top.W=12.00' n= 0.030				
21.4	628	Total							
21.4	47 1 628	Total	14.00	200.20	Bot.W=2.00' D=2.00' Z= 3.0 & 2.0 '/' Top n= 0.030				

Summary for Subcatchment 21:

0.07 cfs @ 12.50 hrs, Volume= 861 cf, Depth= 0.34" Runoff =

 Type III 24-hr
 25-Year Rainfall=5.80"

 Printed
 7/14/2021

 Is LLC
 Page 7

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

	Area (sf)	CN	Description					
	21,947	32	Woods/gras	ss comb., G	Good, HSG A			
	6,433	39	>75% Gras	s cover, Go	ood, HSG A			
	0	74	>75% Gras	s cover, Go	ood, HSG C			
*	0	74	Existing >7	5% Grass c	cover, Good, HSG C			
*	0	98	Proposed p	aved roads	s & driveways			
*	0	98	Existing pav	ved drivewa	ау			
*	0	96	Proposed g	ravel surface	ce			
*	0	98	Proposed w	/alls				
*	1,872	98	Proposed roofs					
	30,252	38	Weighted A	verage				
	28,380		93.81% Pervious Area					
	1,872		6.19% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.1	42	0.0475	0.14		Sheet Flow, Seg A to B			
					Grass: Dense n= 0.240 P2= 3.10"			
7.5	100	0.2900	0.22		Sheet Flow, Seg B to C			
					Woods: Light underbrush n= 0.400 P2= 3.10"			
12.6	142	Total						

Summary for Subcatchment 30:

Runoff = 0.25 cfs @ 15.64 hrs, Volume= 7,017 cf, Depth= 0.11"

	Area (sf)	CN	Description
	792,184	32	Woods/grass comb., Good, HSG A
	6,936	39	>75% Grass cover, Good, HSG A
*	0	98	Proposed paved roads w/curbs & sewers
*	0	96	Proposed gravel surface
*	0	98	Proposed walls
*	0	98	Proposed roofs
	799,120 799,120	32	Weighted Average 100.00% Pervious Area

Type III 24-hr 25-Year Rainfall=5.80" Printed 7/14/2021 Is LLC Page 8

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

To	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cts)	
13.5	150	0.1500	0.19		Sheet Flow, Seg A to B
					Woods: Light underbrush n= 0.400 P2= 3.10"
5.1	264	0.0303	0.87		Shallow Concentrated Flow, Seg B to C
					Woodland Kv= 5.0 fps
6.9	296	0.0203	0.71		Shallow Concentrated Flow, Seg C to D
					Woodland Kv= 5.0 fps
7.4	310	0.0193	0.69		Shallow Concentrated Flow, Seg D to E
					Woodland Kv= 5.0 fps
6.9	575	0.0766	1.38		Shallow Concentrated Flow, Seg E to F
					Woodland Kv= 5.0 fps
0.3	102	0.1569	6.38		Shallow Concentrated Flow, Seg F to G
					Unpaved Kv= 16.1 fps
0.7	236	0.0402	5.34	343.04	Channel Flow, Seg G to H
					Area= 64.3 sf Perim= 129.6' r= 0.50'
					n= 0.035 Earth, dense weeds
0.5	196	0.0206	6.40	55.20	Trap/Vee/Rect Channel Flow, Seg H to I
					Bot.W=2.00' D=1.50' Z= 2.0 & 3.0 '/' Top.W=9.50'
					n= 0.030 Earth, grassed & winding
0.5	187	0 0190	6 15	53 01	Trap/Vee/Rect Channel Flow, Seg I to J
0.0		0.0100	0110	00101	Bot W=2 00' D=1 50' Z= 2 0 & 3 0 '/' Top W=9 50'
					n=0.030 Farth grassed & winding
41 8	2 316	Total			
+1.0	2,510	rotar			

Summary for Subcatchment 31:

Runoff = 0.20 cfs @ 12.76 hrs, Volume= 4,438 cf, Depth= 0.25"

	Area (sf)	CN	Description
	181,172	32	Woods/grass comb., Good, HSG A
	0	72	Woods/grass comb., Good, HSG C
	18,449	39	>75% Grass cover, Good, HSG A
	0	74	>75% Grass cover, Good, HSG C
*	2,594	74	Existing >75% Grass cover, Good, HSG C
*	0	98	Proposed paved roads & driveways
*	4,546	98	Existing paved driveway
*	0	96	Proposed gravel surface
*	0	98	Proposed walls
*	4,905	98	Proposed roofs
	211,666	36	Weighted Average
	202,215		95.53% Pervious Area
	9,451		4.47% Impervious Area

Type III 24-hr 25-Year Rainfall=5.80" Printed 7/14/2021 Is LLC Page 9

0.72"

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.9	150	0.1400	0.18		Sheet Flow, Seg A to B
					Woods: Light underbrush n= 0.400 P2= 3.10"
4.3	284	0.0493	1.11		Shallow Concentrated Flow, Seg B to C
					Woodland Kv= 5.0 fps
0.8	124	0.2576	2.54		Shallow Concentrated Flow, Seg C to D
					Woodland Kv= 5.0 fps
0.4	134	0.1045	5.20		Shallow Concentrated Flow, Seg D to E
					Unpaved Kv= 16.1 fps
2.1	160	0.0624	1.25		Shallow Concentrated Flow, Seg E to F
					Woodland Kv= 5.0 fps
0.5	184	0.0218	6.58	56.79	Trap/Vee/Rect Channel Flow, Seg F to G
					Bot.W=2.00' D=1.50' Z= 2.0 & 3.0 '/' Top.W=9.50'
					n= 0.030 Earth, grassed & winding

22.0 1,036 Total

Summary for Subcatchment 32:

	Runoff	=	0.51 cfs @	12.43 hrs,	Volume=	3,864 cf, Depth=
--	--------	---	------------	------------	---------	------------------

	A	rea (sf)	CN	Description			
		14,766	32	Woods/gras	ss comb., G	Good, HSG A	
		0	72	Woods/gras	ss comb., G	Good, HSG C	
		41,279	39	>75% Gras	s cover, Go	ood, HSG A	
		0	74	>75% Gras	s cover, Go	ood, HSG C	
*		0	74	Existing >7	5% Grass c	over, Good, HSG C	
*		0	98	Proposed p	aved roads	s & driveways	
*		0	98	Existing par	ved drivewa	ау	
*		0	96	Proposed g	ravel surfac	ce	
*		0	98	Proposed w	valls		
*		8,098	98	Proposed roofs			
		64,143	45	Weighted A	verage		
		56,045		87.38% Pe	rvious Area		
		8,098		12.62% Imp	pervious Are	ea	
	т.	1	01			Description	
,		Length	Siop		Capacity	Description	
(min)			<u>) (11/sec)</u>	(CIS)		
	18.7	76	0.017	0.07		Sheet Flow, Seg A to B	
	4.0	404	0.04.4		50.05	Woods: Light underbrush n= 0.400 P2= 3.10"	
	1.3	421	0.014	9 5.42	52.85	I rap/Vee/Rect Channel Flow, Seg B to C	
						Bot.vv=2.00° D=1.50° Z= 3.0 7° Top.vv=11.00°	
		407	-			n= 0.030	
	20.0	497	l otal				

Summary for Subcatchment 33:

Runoff = 0.05 cfs @ 13.85 hrs, Volume= 1,411 cf, Depth= 0.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.80"

	Area (sf)	CN I	Description					
	65,404	32 \	32 Woods/grass comb., Good, HSG A					
	0	72 \	Noods/gras	ss comb., G	Good, HSG C			
	13,014	39 >	>75% Gras	s cover, Go	bod, HSG A			
	0	74 >	>75% Gras	s cover, Go	ood, HSG C			
*	0	74 E	Existing >7	5% Grass c	cover, Good, HSG C			
*	0	98 I	Proposed p	aved roads	s & driveways			
*	0	98 I	Existing pav	ved drivewa	ау			
*	0	96 I	Proposed g	ravel surface	ce			
*	0	98 I	Proposed w	alls				
*	1,976	98 I	Proposed re	oofs				
	80,394	35 \	Neighted A	verage				
	78,418	ę	97.54% Pei	vious Area				
	1,976		2.46% Impe	ervious Area	а			
_								
To	Length	Slope	Velocity	Capacity	Description			
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)				
7.7	' 80	0.1750	0.17		Sheet Flow, Seg A to B			
					Woods: Light underbrush n= 0.400 P2= 3.10"			
12.4	70	0.0400	0.09		Sheet Flow, Seg B to C			
					Woods: Light underbrush n= 0.400 P2= 3.10"			
2.9	9 259	0.0880	1.48		Shallow Concentrated Flow, C TO D			
					Woodland Kv= 5.0 fps			
23.0) 409	Total						

Summary for Subcatchment 34:

Runoff = 1.61 cfs @ 12.10 hrs, Volume= 5,224 cf, Depth= 2.47"

21	00	6-P	ost
----	----	-----	-----

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

	Area (sf)	CN I	Description				
	0	32	Woods/grass comb., Good, HSG A				
	0	72	Noods/gras	ss comb., G	Good, HSG C		
	12,780	39 :	>75% Gras	s cover, Go	bod, HSG A		
	0	74 :	>75% Gras	s cover, Go	ood, HSG C		
*	0	74	Existing >7	5% Grass o	cover, Good, HSG C		
*	7,463	98	Proposed p	aved roads	s & driveways		
*	0	98	Existing pav	ved drivewa	ау		
*	0	96 I	Proposed g	ravel surfa	ce		
*	0	98	Proposed w	valls			
*	5,157	98	Proposed re	oofs			
	25,400	68	Neighted A	verage			
	12,780	!	50.31% Pei	rvious Area			
	12,620	4	49.69% Imp	pervious Ar	ea		
-		<u></u>		A B			
IC	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.2	28	0.0200	0.09		Sheet Flow, Seg B to C		
					Grass: Dense n= 0.240 P2= 3.10"		
1.4	148	0.0084	1.78	11.18	Trap/Vee/Rect Channel Flow, Seg C to D		
					Bot.W=0.00' D=0.50' Z= 0.2 & 50.0 '/' Top.W=25.10'		
					n= 0.030 Earth, grassed & winding		
6.6	176	Total					

Summary for Subcatchment 35:

Runoff	=	1.97 cfs @	12.18 hrs,	Volume=	7,704 cf, Depth= 2.7	′4"

	Area (sf)	CN	Description
	0	72	Woods/grass comb., Good, HSG C
	15,173	39	>75% Grass cover, Good, HSG A
	0	74	>75% Grass cover, Good, HSG C
*	0	74	Existing >75% Grass cover, Good, HSG C
*	10,693	98	Proposed paved roads & driveways
*	0	98	Existing paved driveway
*	264	96	Proposed gravel surface
*	0	98	Proposed walls
*	7,627	98	Proposed roofs
	33,757	71	Weighted Average
	15,437		45.73% Pervious Area
	18,320		54.27% Impervious Area

Type III 24-hr 25-Year Rainfall=5.80" Printed 7/14/2021 s LLC Page 12

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.4	74	0.0200	0.11		Sheet Flow, Seg A to B
1.3	150	0.0100	1.94	12.20	Trap/Vee/Rect Channel Flow, Seg C to D Bot.W=0.00' D=0.50' Z= 50.0 & 0.2 '/' Top.W=25.10' n= 0.030 Earth, grassed & winding

12.7 224 Total

Summary for Reach R1:

Inflow A	rea =	799,120 sf,	0.00% Impervious,	Inflow Depth = 0.11	for 25-Year event
Inflow	=	0.25 cfs @	15.64 hrs, Volume=	7,017 cf	
Outflow	=	0.25 cfs @	15.65 hrs, Volume=	7,017 cf, Att	en= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 2.01 fps, Min. Travel Time= 3.3 min Avg. Velocity = 1.63 fps, Avg. Travel Time= 4.0 min

Peak Storage= 49 cf @ 15.65 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 2.00' Flow Area= 14.0 sf, Capacity= 208.12 cfs

2.00' x 2.00' deep channel, n= 0.030 Side Slope Z-value= 3.0 2.0 '/' Top Width= 12.00' Length= 394.0' Slope= 0.0799 '/' Inlet Invert= 328.50', Outlet Invert= 297.02'

Summary for Pond CB1:

Inflow Are	a =	1,017,981 sf,	1.64% Impervious,	Inflow Depth = 0.22"	for 25-Year event
Inflow	=	2.31 cfs @ 12	2.15 hrs, Volume=	18,542 cf	
Outflow	=	2.31 cfs @ 12	2.15 hrs, Volume=	18,542 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	2.31 cfs @ 12	2.15 hrs, Volume=	18,542 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 293.19' @ 12.26 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	291.40'	15.0" Round SD-3
			L= 4.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 291.40' / 291.16' S= 0.0600 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 12.15 hrs HW=292.46' TW=292.70' (Dynamic Tailwater) **1=SD-3** (Controls 0.00 cfs)

Summary for Pond CB2:

Inflow Are	a =	12,904 sf,	64.60% Impervious,	Inflow Depth = 3.50	0" for 25-Year event
Inflow	=	1.19 cfs @	12.09 hrs, Volume=	3,765 cf	
Outflow	=	1.19 cfs @	12.09 hrs, Volume=	3,765 cf, At	tten= 0%, Lag= 0.0 min
Primary	=	1.19 cfs @	12.09 hrs, Volume=	3,765 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 304.16' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	303.50'	12.0" Round SD-6 L= 110.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 303.50' / 296.50' S= 0.0636 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.17 cfs @ 12.09 hrs HW=304.15' TW=296.90' (Dynamic Tailwater) **1=SD-6** (Inlet Controls 1.17 cfs @ 2.16 fps)

Summary for Pond CB3:

Inflow Are	a =	237,066 sf,	9.31% Impervious,	Inflow Depth = 0.49"	for 25-Year event
Inflow	=	1.61 cfs @ 1	12.10 hrs, Volume=	9,662 cf	
Outflow	=	1.61 cfs @ 1	12.10 hrs, Volume=	9,662 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	1.61 cfs @ 1	12.10 hrs, Volume=	9,662 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 321.79' @ 12.16 hrs

= 0.900 .79 sf
=

Primary OutFlow Max=1.08 cfs @ 12.10 hrs HW=321.70' TW=321.57' (Dynamic Tailwater) **1=SD-8** (Inlet Controls 1.08 cfs @ 1.39 fps)

Summary for Pond CB4:

Inflow Area	a =	270,823 sf,	14.91% Impervious,	Inflow Depth = 0.77"	for 25-Year event
Inflow	=	3.33 cfs @	12.14 hrs, Volume=	17,366 cf	
Outflow	=	3.33 cfs @	12.14 hrs, Volume=	17,366 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	3.33 cfs @	12.14 hrs, Volume=	17,366 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 321.60' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	320.45'	15.0" Round SD-9 L= 111.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 320.45' / 319.90' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
			-

Primary OutFlow Max=3.30 cfs @ 12.14 hrs HW=321.59' TW=310.84' (Dynamic Tailwater) **1=SD-9** (Barrel Controls 3.30 cfs @ 3.68 fps)

Summary for Pond DMH1:

Inflow Area	=	984,001 sf,	0.85% Impervious,	Inflow Depth = 0.15'	for 25-Year event
Inflow	=	1.19 cfs @	12.09 hrs, Volume=	12,293 cf	
Outflow	=	1.19 cfs @	12.09 hrs, Volume=	12,293 cf, Atte	en= 0%, Lag= 0.0 min
Primary	=	1.19 cfs @	12.09 hrs, Volume=	12,293 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 296.91' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	296.25'	12.0" Round SD-4 L= 198.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 296.25' / 292.39' S= 0.0195 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.17 cfs @ 12.09 hrs HW=296.90' TW=292.25' (Dynamic Tailwater) **1=SD-4** (Inlet Controls 1.17 cfs @ 2.16 fps)

Summary for Pond FB1:

Inflow Area	=	334,966 sf,	14.48% In	npervious,	Inflow Depth = (0.76" 1	for 25-1	Year event	
Inflow	=	3.46 cfs @	12.15 hrs,	Volume=	21,229 cf				
Outflow	=	0.34 cfs @	16.39 hrs,	Volume=	21,231 cf,	Atten=	= 90%,	Lag= 254.1	min
Primary	=	0.34 cfs @	16.39 hrs,	Volume=	21,231 cf			•	
Secondary	=	0.00 cfs @	0.00 hrs,	Volume=	0 cf				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 312.81' @ 16.39 hrs Surf.Area= 5,649 sf Storage= 12,071 cf

Plug-Flow detention time= 871.1 min calculated for 21,216 cf (100% of inflow) Center-of-Mass det. time= 872.5 min (1,769.7 - 897.2)

Volume	Invert	Avail.Storage	Storage Description
#1	310.00'	19,505 cf	Custom Stage Data (Irregular)Listed below (Recalc)

Type III 24-hr 25-Year Rainfall=5.80"

Prepared by DM Roma Consulting Engineers HydroCAD® 10.00-25 s/n 09237 © 2019 HydroCAD Software Solutions LLC Printed 7/14/2021 Page 15

Elevatio (fee	on et)	Surf.Area F (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
310.0	00	3.000	294.3	0	0	3.000
312 (0	4 881	332.0	7 805	7 805	4 981
314 (0	6,876	367.9	11 700	19,505	7 099
011.		0,010	007.0	11,700	10,000	1,000
Device	Routing	Invert	Outlet	Devices		
#1	Primary	305.83'	12.0"	Round 12" SD		
	,		L= 47	.0' CPP, projecting	. no headwall. Ke=	= 0.900
			Inlet /	Outlet Invert= 305.8	33' / 302.00' S= 0.	0815 '/' Cc= 0.900
			n= 0.0	13 Corrugated PE.	smooth interior. F	low Area= 0.79 sf
#2	Device 1	307 83'	1.0" \	/ert_1" Orifice at e	nd of $4"UD C= 06$	600
#3	Device 2	310.00'	2 4 1 0	in/hr Exfiltration o	ver Surface area	
#Δ	Device 1	311 50'	2 5" \	lert Orifice/Grate	C = 0.600	
#5	Device 1	312.80'	Noon	ah P/3/5 Boohiyo	Grate Light Duty-	rea structure
#0	Device	012.00	Head	(foot) 0.00 0.10 0		
				(100) (100) (10)	0.15 0.20 0.25 0.5	0 0.33 0.40 0.30 0.00
			0.70 Diach	$(of_{0}) = 0.00 + 0.00 + 0.0000 + 0.$	1 600 2 500 2 50	0 4 000 4 600 5 200
			DISCI	(CIS) 0.000 0.900	1.000 2.300 3.30	10 4.000 4.600 5.300
	o .	040.001	6.800	7.500 8.100 8.600	J 9.100 9.600	
#6	Seconda	ry 313.00'	6.0' IC	ong x 12.0' breadth	Broad-Crested R	lectangular Weir
			Head	(teet) 0.20 0.40 0.	60 0.80 1.00 1.2	0 1.40 1.60
			Coef.	(English) 2.57 2.62	2 2.70 2.67 2.66	2.67 2.66 2.64

Primary OutFlow Max=0.34 cfs @ 16.39 hrs HW=312.81' TW=0.00' (Dynamic Tailwater)

-1=12" SD (Passes 0.34 cfs of 7.60 cfs potential flow)

-2=1" Orifice at end of 4"UD (Orifice Controls 0.06 cfs @ 10.70 fps)

3=Exfiltration (Passes 0.06 cfs of 0.32 cfs potential flow)

-4=Orifice/Grate (Orifice Controls 0.18 cfs @ 5.29 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=310.00' TW=0.00' (Dynamic Tailwater) -6=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond FI1:

Inflow Are	a =	211,666 sf,	4.47% Impervious,	Inflow Depth = 0.25 "	for 25-Year event
Inflow	=	0.20 cfs @	12.76 hrs, Volume=	4,438 cf	
Outflow	=	0.20 cfs @	12.76 hrs, Volume=	4,438 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	0.20 cfs @	12.76 hrs, Volume=	4,438 cf	•

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 323.41' @ 12.76 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	323.15'	12.0" Round SD-7 L= 123.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 323.15' / 322.55' S= 0.0049 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.20 cfs @ 12.76 hrs HW=323.41' TW=321.16' (Dynamic Tailwater) **1=SD-7** (Barrel Controls 0.20 cfs @ 1.86 fps)

Summary for Pond SD5:

Inflow Area	a =	971,097 sf,	0.00% Impervious,	Inflow Depth = 0.11	' for 25-Year event
Inflow	=	0.30 cfs @	15.59 hrs, Volume=	8,527 cf	
Outflow	=	0.30 cfs @	15.59 hrs, Volume=	8,527 cf, Att	en= 0%, Lag= 0.0 min
Primary	=	0.30 cfs @	15.59 hrs, Volume=	8,527 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 297.33' @ 15.59 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	297.02'	12.0" Round SD-5 L= 34.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 297.02' / 296.75' S= 0.0079 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.30 cfs @ 15.59 hrs HW=297.33' TW=296.58' (Dynamic Tailwater) **1=SD-5** (Inlet Controls 0.30 cfs @ 1.49 fps)

Summary for Pond ST: StormTech

Inflow Are	ea =	1,017,981 sf,	1.64% Impervious,	Inflow Depth =	0.22" for 2	25-Year event
Inflow	=	2.31 cfs @ 1	2.15 hrs, Volume=	18,542 cf		
Outflow	=	2.69 cfs @ 1	2.21 hrs, Volume=	18,541 cf,	, Atten= 0%	, Lag= 4.1 min
Primary	=	2.69 cfs @ 1	2.21 hrs, Volume=	18,541 cf		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 293.00' @ 12.22 hrs Surf.Area= 1,481 sf Storage= 1,869 cf

Plug-Flow detention time= 64.7 min calculated for 18,528 cf (100% of inflow) Center-of-Mass det. time= 65.0 min (1,033.5 - 968.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	290.65'	1,058 cf	18.17'W x 81.52'L x 2.33'H Field A
			3,456 cf Overall - 811 cf Embedded = 2,645 cf x 40.0% Voids
#2A	291.15'	811 cf	ADS_StormTech SC-310 +Cap x 55 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			55 Chambers in 5 Rows
		1,869 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	289.65'	12.0" Round Culvert
	-		L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 289.65' / 289.15' S= 0.0833 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	292.73'	6.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

290.65' 3.0" Vert. Orifice/Grate C= 0.600 #3 Device 1

Primary OutFlow Max=2.40 cfs @ 12.21 hrs HW=292.97' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 2.40 cfs of 6.36 cfs potential flow) -2=Broad-Crested Rectangular Weir (Weir Controls 2.05 cfs @ 1.40 fps)

-3=Orifice/Grate (Orifice Controls 0.35 cfs @ 7.14 fps)

Summary for Link SP1: Ex. CB

Inflow Are	ea =	1,059,504 sf,	2.21% Impervious,	Inflow Depth = 0.31"	for 25-Year event
Inflow	=	4.66 cfs @	12.22 hrs, Volume=	27,390 cf	
Primary	=	4.66 cfs @	12.22 hrs, Volume=	27,390 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link SP2:

Inflow A	Area	a =		30,252 sf,	6.19% Ir	mpervious,	Inflow Depth =	0.3	4" for 25	5-Year event
Inflow		=	().07 cfs @	12.50 hrs,	Volume=	861 c	f		
Primar	у	=	().07 cfs @	12.50 hrs,	Volume=	861 c	of, A	tten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link SP3:

Inflow /	Area	=	415,360 sf	, 12.15% Imperviou	is, Inflow Depth =	0.65" 1	for 25-Year event
Inflow		=	0.38 cfs @	16.37 hrs, Volume	e= 22,642 cf		
Primar	у	=	0.38 cfs @	16.37 hrs, Volume	e= 22,642 cf	, Atten=	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Subcatchment 10:	Runoff Area=41,523 sf 16.11% Impervious Runoff Depth=0.72" Flow Length=520' Tc=17.4 min CN=69 Runoff=0.49 cfs 2,505 cf	
Subcatchment11:	Runoff Area=33,980 sf 24.54% Impervious Runoff Depth=0.55" Flow Length=410' Tc=14.4 min CN=65 Runoff=0.29 cfs 1,565 cf	
Subcatchment 12:	Runoff Area=12,904 sf 64.60% Impervious Runoff Depth=1.26" Flow Length=333' Tc=6.0 min CN=79 Runoff=0.42 cfs 1,357 cf	
Subcatchment 20:	Runoff Area=171,977 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=628' Tc=21.4 min CN=32 Runoff=0.00 cfs 0 cf	
Subcatchment21:	Runoff Area=30,252 sf 6.19% Impervious Runoff Depth=0.00" Flow Length=142' Tc=12.6 min CN=38 Runoff=0.00 cfs 0 cf	
Subcatchment30:	Runoff Area=799,120 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=2,316' Tc=41.8 min CN=32 Runoff=0.00 cfs 0 cf	
Subcatchment31:	Runoff Area=211,666 sf 4.47% Impervious Runoff Depth=0.00" Flow Length=1,036' Tc=22.0 min CN=36 Runoff=0.00 cfs 0 cf	
Subcatchment 32:	Runoff Area=64,143 sf 12.62% Impervious Runoff Depth=0.03" Flow Length=497' Tc=20.0 min CN=45 Runoff=0.01 cfs 178 cf	
Subcatchment 33:	Runoff Area=80,394 sf 2.46% Impervious Runoff Depth=0.00" Flow Length=409' Tc=23.0 min CN=35 Runoff=0.00 cfs 0 cf	
Subcatchment 34:	Runoff Area=25,400 sf 49.69% Impervious Runoff Depth=0.68" Flow Length=176' Tc=6.6 min CN=68 Runoff=0.38 cfs 1,437 cf	
Subcatchment 35:	Runoff Area=33,757 sf 54.27% Impervious Runoff Depth=0.82" Flow Length=224' Tc=12.7 min CN=71 Runoff=0.53 cfs 2,303 cf	
Reach R1:	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0 cf n=0.030 L=394.0' S=0.0799 '/' Capacity=208.12 cfs Outflow=0.00 cfs 0 cf	
Pond CB1:	Peak Elev=291.80' Inflow=0.58 cfs 2,922 cf 15.0" Round Culvert n=0.013 L=4.0' S=0.0600 '/' Outflow=0.58 cfs 2,922 cf	
Pond CB2:	Peak Elev=303.87' Inflow=0.42 cfs 1,357 cf 12.0" Round Culvert n=0.013 L=110.0' S=0.0636 '/' Outflow=0.42 cfs 1,357 cf	
Pond CB3:	Peak Elev=321.11' Inflow=0.38 cfs 1,437 cf 12.0" Round Culvert n=0.013 L=14.0' S=0.0143 '/' Outflow=0.38 cfs 1,437 cf	
Pond CB4:	Peak Elev=320.96' Inflow=0.85 cfs 3,740 cf 15.0" Round Culvert n=0.013 L=111.0' S=0.0050 '/' Outflow=0.85 cfs 3,740 cf	
21006-Post Prepared by DM Roma Con HydroCAD® 10.00-25 s/n 09237	Type III 24-hr 2 sulting Engineers © 2019 HydroCAD Software Solutions LLC	2-Year Rainfall=3.10" Printed 7/14/2021 Page 2
---	--	--
Pond DMH1:	Peak Elev=296.62' 12.0" Round Culvert n=0.013 L=198.0' S=0.0195 '/' Or	Inflow=0.42 cfs 1,357 cf utflow=0.42 cfs 1,357 cf
Pond FB1:	Peak Elev=310.67' Storage=2,207 cf Primary=0.04 cfs 3,921 cf Secondary=0.00 cfs 0 cf Ou	Inflow=0.85 cfs 3,918 cf utflow=0.04 cfs 3,921 cf
Pond FI1:	Peak Elev=323.1 /' Round Culvert_n=0.013_L=123.0'_S=0.0049	15' Inflow=0.00 cfs 0 cf " Outflow=0.00 cfs 0 cf
Pond SD5:	Peak Elev=297.0 /' Round Culvert_n=0.013_L=34.0'_S=0.0079	02' Inflow=0.00 cfs 0 cf " Outflow=0.00 cfs 0 cf
Pond ST: StormTech	Peak Elev=291.52' Storage=715 cf O	Inflow=0.58 cfs 2,922 cf utflow=0.20 cfs 2,921 cf
Link SP1: Ex. CB	Pr	Inflow=0.67 cfs 5,426 cf imary=0.67 cfs 5,426 cf
Link SP2:		Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link SP3:	Pr	Inflow=0.04 cfs 3,921 cf imary=0.04 cfs 3,921 cf

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 10:	Runoff Area=41,523 sf 16.11% Impervious Runoff Depth=1.67" Flow Length=520' Tc=17.4 min CN=69 Runoff=1.28 cfs 5,786 cf
Subcatchment11:	Runoff Area=33,980 sf 24.54% Impervious Runoff Depth=1.39" Flow Length=410' Tc=14.4 min CN=65 Runoff=0.90 cfs 3,946 cf
Subcatchment 12:	Runoff Area=12,904 sf 64.60% Impervious Runoff Depth=2.46" Flow Length=333' Tc=6.0 min CN=79 Runoff=0.84 cfs 2,646 cf
Subcatchment 20:	Runoff Area=171,977 sf 0.00% Impervious Runoff Depth=0.01" Flow Length=628' Tc=21.4 min CN=32 Runoff=0.01 cfs 81 cf
Subcatchment21:	Runoff Area=30,252 sf 6.19% Impervious Runoff Depth=0.10" Flow Length=142' Tc=12.6 min CN=38 Runoff=0.01 cfs 255 cf
Subcatchment 30:	Runoff Area=799,120 sf 0.00% Impervious Runoff Depth=0.01" Flow Length=2,316' Tc=41.8 min CN=32 Runoff=0.02 cfs 378 cf
Subcatchment31:	Runoff Area=211,666 sf 4.47% Impervious Runoff Depth=0.06" Flow Length=1,036' Tc=22.0 min CN=36 Runoff=0.04 cfs 1,022 cf
Subcatchment 32:	Runoff Area=64,143 sf 12.62% Impervious Runoff Depth=0.32" Flow Length=497' Tc=20.0 min CN=45 Runoff=0.15 cfs 1,727 cf
Subcatchment33:	Runoff Area=80,394 sf 2.46% Impervious Runoff Depth=0.04" Flow Length=409' Tc=23.0 min CN=35 Runoff=0.01 cfs 270 cf
Subcatchment 34:	Runoff Area=25,400 sf 49.69% Impervious Runoff Depth=1.60" Flow Length=176' Tc=6.6 min CN=68 Runoff=1.02 cfs 3,388 cf
Subcatchment35:	Runoff Area=33,757 sf 54.27% Impervious Runoff Depth=1.82" Flow Length=224' Tc=12.7 min CN=71 Runoff=1.28 cfs 5,117 cf
Reach R1:	Avg. Flow Depth=0.01' Max Vel=1.01 fps Inflow=0.02 cfs 378 cf n=0.030 L=394.0' S=0.0799 '/' Capacity=208.12 cfs Outflow=0.02 cfs 378 cf
Pond CB1:	Peak Elev=292.88' Inflow=1.48 cfs 7,051 cf 15.0" Round Culvert n=0.013 L=4.0' S=0.0600 '/' Outflow=1.48 cfs 7,051 cf
Pond CB2:	Peak Elev=304.03' Inflow=0.84 cfs 2,646 cf 12.0" Round Culvert n=0.013 L=110.0' S=0.0636 '/' Outflow=0.84 cfs 2,646 cf
Pond CB3:	Peak Elev=321.45' Inflow=1.02 cfs 4,410 cf 12.0" Round Culvert n=0.013 L=14.0' S=0.0143 '/' Outflow=1.02 cfs 4,410 cf
Pond CB4:	Peak Elev=321.31' Inflow=2.14 cfs 9,527 cf 15.0" Round Culvert n=0.013 L=111.0' S=0.0050 '/' Outflow=2.14 cfs 9.527 cf

21006-Post Prepared by DM Roma (HydroCAD® 10.00-25 s/n 09	Type III 24-hr 10-Year Rainfall=4.60" onsulting Engineers Printed 7/14/2021 37 © 2019 HydroCAD Software Solutions LLC Page 4
Pond DMH1:	Peak Elev=296.78' Inflow=0.84 cfs 3,105 cf 12.0" Round Culvert n=0.013 L=198.0' S=0.0195 '/' Outflow=0.84 cfs 3,105 cf
Pond FB1:	Peak Elev=311.82' Storage=6,936 cf Inflow=2.14 cfs 11,254 cf Primary=0.13 cfs 11,256 cf Secondary=0.00 cfs 0 cf Outflow=0.13 cfs 11,256 cf
Pond FI1:	Peak Elev=323.26' Inflow=0.04 cfs 1,022 cf 12.0" Round Culvert n=0.013 L=123.0' S=0.0049 '/' Outflow=0.04 cfs 1,022 cf
Pond SD5:	Peak Elev=297.11' Inflow=0.03 cfs 459 cf 12.0" Round Culvert n=0.013 L=34.0' S=0.0079 '/' Outflow=0.03 cfs 459 cf
Pond ST: StormTech	Peak Elev=292.85' Storage=1,791 cf Inflow=1.48 cfs 7,051 cf Outflow=1.03 cfs 7,050 cf
Link SP1: Ex. CB	Inflow=2.03 cfs 12,835 cf Primary=2.03 cfs 12,835 cf
Link SP2:	Inflow=0.01 cfs 255 cf Primary=0.01 cfs 255 cf
Link SP3:	Inflow=0.14 cfs 11,526 cf Primary=0.14 cfs 11,526 cf

ATTACHMENT 6

INSPECTION, MAINTENANCE AND HOUSEKEEPING PLAN

CONSULTING ENGINEERS

INSPECTION, MAINTENANCE, AND HOUSEKEEPING PLAN (Prepared by Jayson Haskell, PE #13002)

RAYMOND HILLS VILLAGE WEBBS MILLS ROAD RAYMOND, MAINE

Responsible Party

Owner: Raymond Hills, LLC 9 Davis Farm Road Raymond, Maine 04071

The owner/applicant is responsible for the maintenance of all stormwater management structures and related site components and the keeping of a maintenance log book with service records. Records of all inspections and maintenance work performed must be kept on file with the owner and retained for a minimum of five years. The maintenance log will be made available to the Town and Maine Department of Environmental Protection (MDEP) upon request. At a minimum, the maintenance of stormwater management systems will be performed on the prescribed schedule.

The procedures outlined in this plan are provided as a general overview of the anticipated practices to be utilized on this site. In some instances, additional measures may be required due to unexpected conditions. *The Maine Erosion and Sedimentation Control BMP* and *Stormwater Management for Maine: Best Management Practices* Manuals published by the MDEP should be referenced for additional information.

During Construction

- 1. Inspection and Corrective Action: It is the contractor's responsibility to comply with the inspection and maintenance procedures outlined in this section. Inspection shall occur on all disturbed and impervious areas, erosion control measures, material storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. These areas shall be inspected at least once a week as well as 24 hours before and after a storm event generating more than 0.5 inch of rainfall over a 24-hour period and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in the permit, shall conduct the inspections.
- 2. Maintenance: Erosion controls shall be maintained in effective operating condition until areas are permanently stabilized. If best management practices (BMPs) need to be repaired, the repair work should be initiated upon discovery of the problem but no later than the end of the next workday. If BMPs need to be maintained or modified, additional BMPs are necessary, or

other corrective action is needed, implementation must be completed within seven calendar days and prior to any rainfall event.

- **3.** Construction vehicles and equipment: Construction vehicles and equipment shall not be driven or stored within the underdrained filter basin. To ensure the basin functions as designed perpetually, prohibiting vehicles and equipment from these areas will limit the risk of inhibiting the function of the basin due to compaction.
- **4. Snow Storage:** The proposed underdrained filter basin shall not be utilized for snow storage. Snow storage areas shall be located away from the basin, and in areas that will direct snow melt runoff into one of the basins on site.
- 5. Documentation: A report summarizing the inspections and any corrective action taken must be maintained on site. The log must include the name(s) and qualifications of the person making the inspections; the date(s) of the inspections; and the major observations about the operation and maintenance of erosion and sedimentation controls, materials storage areas, and vehicle access points to the parcel. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and location(s) where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to MDEP and Town staff, and a copy must be provided upon request. The owner shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

Housekeeping

- 1. **Spill prevention:** Controls must be used to prevent pollutants from construction and waste materials on site to enter stormwater, which includes storage practices to minimize exposure of the materials to stormwater. The site contractor or operator must develop, and implement as necessary, appropriate spill prevention, containment, and response planning measures.
- 2. Groundwater protection: During construction, liquid petroleum products and other hazardous materials with the potential to contaminate groundwater may not be stored or handled in areas of the site draining to an infiltration area. An "infiltration area" is any area of the site that by design or as a result of soils, topography and other relevant factors accumulates runoff that infiltrates into the soil. Dikes, berms, sumps, and other forms of secondary containment that prevent discharge to groundwater may be used to isolate portions of the site for the purposes of storage and handling of these materials. Any project proposing infiltration of stormwater must provide adequate pre-treatment of stormwater prior to discharge of storage to the infiltration area, or provide for treatment within the infiltration area, in order to prevent the accumulation of fines, reduction in infiltration rate, and consequent flooding and destabilization.

- **3.** Fugitive sediment and dust: Actions must be taken to ensure that activities do not result in noticeable erosion of soils or fugitive dust emissions during or after construction. Oil may not be used for dust control, but other water additives may be considered as needed. A stabilized construction entrance (SCE) should be included to minimize tracking of mud and sediment. If off-site tracking occurs, public roads should be swept immediately and no less than once a week and prior to significant storm events. Operations during dry months, that experience fugitive dust problems, should wet down unpaved access roads once a week or more frequently as needed with a water additive to suppress fugitive sediment and dust.
- 4. Debris and other materials: Minimize the exposure of construction debris, building and landscaping materials, trash, fertilizers, pesticides, herbicides, detergents, sanitary waste and other materials to precipitation and stormwater runoff. These materials must be prevented from becoming a pollutant source.
- 5. Excavation de-watering: Excavation de-watering is the removal of water from trenches, foundations, coffer dams, ponds, and other areas within the construction area that retain water after excavation. In most cases the collected water is heavily silted and hinders correct and safe construction practices. The collected water removed from the ponded area, either through gravity or pumping, must be spread through natural wooded buffers or removed to areas that are specifically designed to collect the maximum amount of sediment possible, like a cofferdam sedimentation basin. Avoid allowing the water to flow over disturbed areas of the site. Equivalent measures may be taken if approved by the Department.
- 6. Authorized Non-stormwater discharges: Identify and prevent contamination by nonstormwater discharges. Where allowed non-stormwater discharges exist, they must be identified and steps should be taken to ensure the implementation of appropriate pollution prevention measures for the non-stormwater component(s) of the discharge. Authorized nonstormwater discharges are:
 - (a) Discharges from firefighting activity;

(b) Fire hydrant flushings;

(c) Vehicle washwater if detergents are not used and washing is limited to the exterior of vehicles (engine, undercarriage and transmission washing is prohibited);

(d) Dust control runoff in accordance with permit conditions and Appendix (C)(3);

(e) Routine external building washdown, not including surface paint removal, that does not involve detergents;

(f) Pavement washwater (where spills/leaks of toxic or hazardous materials have not occurred, unless all spilled material had been removed) if detergents are not used;

(g) Uncontaminated air conditioning or compressor condensate;

(h) Uncontaminated groundwater or spring water;

(i) Foundation or footer drain-water where flows are not contaminated;

- (j) Uncontaminated excavation dewatering (see requirements in Appendix C(5));
- (k) Potable water sources including waterline flushings; and
- (I) Landscape irrigation.

7. Unauthorized non-stormwater discharges: Approval from the Town does not authorize a discharge that is mixed with a source of non-stormwater, other than those discharges in compliance with Section 6 above. Specifically, the Town's approval does not authorize discharges of the following:

(a) Wastewater from the washout or cleanout of concrete, stucco, paint, form release oils, curing compounds or other construction materials;

- (b) Fuels, oils or other pollutants used in vehicle and equipment operation and maintenance;
- (c) Soaps, solvents, or detergents used in vehicle and equipment washing; and
- (d) Toxic or hazardous substances from a spill or other release.

Post Construction

- 1. Inspection and Corrective Action: All stormwater measures must be maintained by the owner in effective operating condition. A qualified third-party inspector hired by the owner shall at least annually inspect the stormwater management facilities. This person should have knowledge of erosion and stormwater control including the standards and conditions of the site's approvals. The inspector shall be certified through the MDEP to inspect the stormwater infrastructure. The following areas, facilities, and measures must be inspected, and identified deficiencies must be corrected. Areas, facilities, and measures other than those listed below may also require inspection on a specific site.
 - A. Vegetated Areas: Inspect vegetated areas, particularly slopes and embankments, early in the growing season or after heavy rains to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
 - **B.** Ditches, Swales, and Open Channels: Inspect ditches, swales, and other open channels in the spring, late fall, and after heavy rains to remove any obstructions to flow, remove accumulated sediments and debris, control vegetative growth that could obstruct flow, and repair any erosion of the ditch lining. Vegetated ditches must be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity. Repair any slumping side slopes as soon as practicable. The channel must receive adequate routine maintenance to maintain capacity and prevent or correct any erosion of the channel's bottom or side slopes.
 - **C. Storm Drains:** Inspect storm drains in the spring, late fall, and after heavy rains to remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit; and to repair any erosion damage at the storm drain's outlet.
 - **D.** Catch Basins and Outlet Control Structures: Inspect and, if required, clean out structure at least once a year, preferably in early spring. Clean out must include the removal and legal disposal of any accumulated sediments and debris at the bottom of the structure and inlet grate.

E. Underdrained Filter Basin: The filter basins are not intended to function as snow storage areas. Inspector to verify that winter plowing operations are not dumping or pushing snow into the basins. The basins shall also not be used for vehicle or heavy equipment storage. Basin should be inspected after several major storm events (0.5 inches rainfall over 24 hours) to determine drawdown time during the first year. Basins to be inspected every six months thereafter with at least one inspection after a major storm event.

The basin should drain dry within 24 to 48 hours following a one-inch storm. If ponding exceeds 48 hours, the top of the filter bed must be rototilled to reestablish the soil's filtration capacity. If water ponds on the surface of the bed for more than 72 hours, the top several inches of the filter shall be replaced with fresh material. Inspect for debris and sediment build up in the forebay and basin and remove as needed. Mowing of the basin can only occur semi-annually to a height of no less than 6 inches utilizing a hand-held string trimmer or push-mower. Any bare areas or erosion rills shall be repaired with new filter media or sandy loam then seeded and mulched. The basin should also be inspected annually for destabilization of side slopes, embankment settling and other signs of structural failure.

- **F. Emergency Spillway:** Spillways should be inspected semi-annually and following major storm events for the first year and every six months thereafter to remove any obstructions to flow. Any woody vegetation growing through riprap lining must be removed. Replace riprap on areas where any underlying filter fabric is showing through the stone or where stones have been dislodged.
- **G.** Filterra Bioretention Units: Once the site is fully stabilized, and paving complete the system can be activated. Once activated, inspection should occur annually thereafter, and should be observed for debris, trash and sediment accumulation, as well as general health of the plants or trees installed within the media. Maintenance protocols from the manufacture shall be followed.
- H. StormTech Chambers SC-310: The manufacture recommends that at a minimum that annual inspections are conducted. Initially the system shall be inspected every 6 months for the first year of operation. If inspection indicates that sediment has accumulated, a measurement to determine the depth of sediment shall be performed. When an average depth of 3 inches is exceeded then clean-out shall be performed.
- I. Regular Maintenance: Clear accumulations of winter sand along roadway and parking areas once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along pavement shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader.
- J. Documentation: Keep a log (report) summarizing inspections, maintenance, and any corrective actions taken. The log must include the date on which each inspection or

maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean-out of any sediments or debris, indicate where the sediment and debris was disposed after removal. The log must be made accessible to Town and MDEP staff upon request. The permittee shall retain a copy of the log for a period of at least five years from the completion of permanent stabilization. Attached is a sample log.

Re-certification

Submit a certification of the following to the MDEP within three months of the expiration of each five-year interval from the date of issuance of the permit.

- (a) **Identification and repair of erosion problems**. All areas of the project site have been inspected for areas of erosion, and appropriate steps have been taken to permanently stabilize these areas.
- (b) **Inspection and repair of stormwater control system**. All aspects of the stormwater control system have been inspected for damage, wear, and malfunction, and appropriate steps have been taken to repair or replace the system, or portions of the system.
- (c) **Maintenance**. The erosion and stormwater maintenance plan for the site is being implemented as written, or modifications to the plan have been submitted to and approved by the Department, and the maintenance log is being maintained.

Municipalities with separate storm sewer systems regulated under the Maine Pollutant Discharge Elimination System (MPDES) Program may report on all regulated systems under their control as part of their required annual reporting in lieu of separate certification of each system. Municipalities not regulated by the MPDES Program, but that are responsible for maintenance of permitted stormwater systems, may report on multiple stormwater systems in one report.

Duration of Maintenance

Perform maintenance as described.

INSPECTION AND MAINTENANCE LOG – GENERAL INSPECTION

RAYMOND HILLS VILLAGE WEBBS MILLS ROAD RAYMOND, MAINE

The following stormwater management and erosion control items shall be inspected and maintained as prescribed in the Maintenance Plan with recommended frequencies as identified below. The owner is responsible for keeping this maintenance log on file for a minimum of five years and shall provide a copy to the Town and MDEP upon request. Inspections are to be performed by a qualified third-party inspector and all corrective actions shall be performed by personnel familiar with stormwater management systems and erosion controls.

Maintenance	Maintenance Event	Date	Responsible	Comments
Item		Performed	Personnel	
Vegetated	Inspect slopes and			
Areas	embankments early in			
	Spring.			
Storm Drains	Inspect semiannually and			
	after major rainfall.			
	Repair erosion at miet or			
	Penair displaced ripran			
	Clean accumulated			
	>20% full			
Catch Dasing	>20% Iuli.			
	structure is properly			
	draining			
	Remove accumulated			
	sediment semiannually.			
	Inspect grates/inlets and			
	remove debris as needed.			
Filterra Units	Inspect annually and after			
	major rain events to			
	ensure that unit drains			
	within 24-48 hours			
	Inspect annually for			
	erosion or sediment			
	accumulation and repair as			
	needed.			
Stormtech	Inspect annually for			
SC-310	significant sediment			
Chambers	If 2% and import			
	11 >3 Sediment			
	system per manufacturer			
	recommendations			
Regular	Clear accumulation of			
Maintananaa	winter sand in payed areas			
wantenance	annually.			

INSPECTION AND MAINTENANCE LOG – UNDERDRAINED FILTER BASIN

RAYMOND HILLS VILLAGE WEBBS MILLS ROAD RAYMOND, MAINE

The following stormwater management and erosion control items shall be inspected and maintained as prescribed in the Maintenance Plan with recommended frequencies as identified below. The owner is responsible for keeping this maintenance log on file for a minimum of five years and shall provide a copy to the Town and MDEP upon request. Inspections are to be performed by a qualified third-party inspector and all corrective actions shall be performed by personnel familiar with stormwater management systems and erosion controls.

Maintenance	Maintenance Event	Date	Responsible	Comments
Item		Performed	Personnel	
Underdrained	Check after each rainfall			
Filter Basin	event to ensure that			
The Bush	pond drains within 24-			
	48 hours.			
	Replace top several			
	inches of filter if pond			
	does not drain within 72			
	hours.			
	Mow grass no more			
	than twice a year to no			
	less than 6 inches in			
	height.			
	Inspect semi-annually			
	for erosion or sediment			
	accumulation and repair			
	as necessary.			
	Inspector to verify basin			
	not utilized for show			
	storage			
	inspector to verify basin			
	or boow oquipmont			
	storage			
Outlot	Inspect to ensure that			
Outlet	structure is properly			
Control	draining.			
Structure	Remove accumulated			
	sediment semiannually.			
	Inspect grates/inlets			
	and remove debris as			
	needed.			
Emergencv	Inspect and remove			
Snillway	obstructions as			
Spinway	necessary.			
	Remove woody			
	vegetation.			
	Replace riprap as			
	necessary.			

Stormwater Compliance Proposal

Job Name: Raymond Hills Apartments

Location: Raymond, Maine Quote Number: 19826RH Quote Date: 7/12/2021 Contract Term: 5 Years

Inspection, Maintenance, and Compliance Reporting Fees

ltem #	Description	Annual Total
1	Inspection and Reporting of Stormwater Components	\$1,600.00
2	Annual Maintenance of Filterra Systems	\$1,200.00
3	Other Maintenance Service Fees	See Below

Notes:

- Service pertains to annual inspection and reporting. Inspection pertains to numerous stormwater components installed on this site including (4) catch basins, (1) drain manhole, (1) field inlet, conveyance piping, (2) Filterra Systems, and (1) subsurface storage system comprised of StormTech chambers and an outlet control structure. Reporting will include photographic documentation of inspection findings and maintenance actions. Reporting service includes annual reporting to local jurisdiction as well as submittal to the Maine DEP to satisfy the 5-yr recertification program if needed.
- 2. Service pertains to annual maintenance of Filterra Systems. Maintenance consists of removal of sediment, debris, and trash from each stormwater facility, removal of the existing mulch from each stormwater facility, and installation of fresh mulch in each stormwater facility. Pruning of vegetation will also be performed as needed.
- **3.** Service pertains to use of JetVac equipment as need for clean out of drainage structures, conveyance pipe, subsurface storage chambers, and outlet structures. Preferred customer JetVac rate is \$235 per hour plus disposal with a 4 hour minimum. This activity will only be performed if found to be needed based on the results of the inspections.

Terms & Conditions:

- 1. Payment is agreed to be made within 30 days of receipt of invoice. Invoice will be sent along with a report upon completion of service activity.
- 2. Contract term commences upon date of 1st inspection and will run for five consecutive years from that date.
- 3. STERLING Stormwater Maintenance Services is not the manufacturer nor was it involved in the design of the above listed stormwater management systems and therefore accepts no responsibility for the actual performance of the storm water management systems.

As an authorized representative of the above referenced site, I hereby accept this contract and the associated terms and conditions:

Print Name:______ Date: ______ Sign Here: ______ Date: _____